基于卷积神经网络的目标检测

news2024/11/25 6:56:56

 卷积神经网络基础知识

1.什么是filter
通常一个6x6的灰度图像,构造一个3*3的矩阵,在卷积神经网络中称之为filter,对6x6的图像进行卷积运算。

2.什么是padding
假设输出图像大小为nn与过滤器大小为ff,输出图像大小则为(n−f+1)∗(n−f+1)(n−f+1)∗(n−f+1)(n-f+1)(n-f+1)。
这样做卷积运算的缺点是,卷积图像的大小会不断缩小,另外图像的左上角的元素只被一个输出所使用,所以在图像边缘的像素在输出中采用较少,也就意味着你丢掉了很多图像边缘的信息,为了解决这两个问题,就引入了padding操作,也就是在图像卷积操作之前,沿着图像边缘用0进行图像填充。对于33的过滤器,我们填充宽度为1时,就可以保证输出图像和输入图像一样大。

padding的两种模式:
Valid:no padding
输入图像nn,过滤器ff,输出图像大小为:(n−f+1)∗(n−f+1)
Same:输出图像和输入图像一样大

3.卷积步长
卷积步长是指过滤器在图像上滑动的距离,前两部分步长都默认为1

4.最大池化和平均池化
最大池化思想很简单,把44的图像分割成4个不同的区域,然后输出每个区域的最大值,这就是最大池化所做的事情。其实这里我们选择了22的过滤器,步长为2。在一幅真正的图像中提取最大值可能意味着提取了某些特定特征,比如垂直边缘、一只眼睛等等。
平均池化和最大池化唯一的不同是,它计算的是区域内的平均值而最大池化计算的是最大值。在日常应用使用最多的还是最大池化。

       目标检测是一种应用广泛的计算机视觉技术,能够对图片、视频中的目标进行分类和定位,基于卷积神经网络的目标检测算法主要分为Two-stage和One-stage两种类型。 


       Two-stage算法会先生成一些候选框,再对每个候选框进行分类和定位优化。虽然它们的准确率通常较高,但需要更多时间和计算资源。而One-stage算法则能在特征解码时,一并生成目标所属的种类和区域信息,在执行速度上更具优势,近年来已不断优化,在检测精度比肩甚至超过了Two-stage算法。常见的Two-stage算法有RCNN系列,如R-CNN、Fast-RCNN、Faster-RCN等;常见的One-stage算法有YOLO系列,如YOLOv1~v10和YOLOX等。

前言
本文目的是用尽量浅显易懂的语言让零基础小白能够理解什么是YOLO系列模型,以及他们的设计思想和改进思路分别是什么。我不会把YOLO的论文给你用软件翻译一遍,这样做毫无意义;也不会使用太专业晦涩的名词和表达,对于每一个新的概念都会解释得尽量通俗一些,目的是使得你能像看故事一样学习YOLO模型,我觉得这样的学习方式才是知乎博客的意义所在。

为了使本文尽量生动有趣,我用葫芦娃作为例子展示YOLO的过程(真的是尽力了。。。)。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1846033.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

qt经典界面框架

目的 其实就是一个简单的界面显示,是很常用的形式。 说起来简单也是简单,但当初,刚开始做时,感觉非常的复杂,不知如何下手。 现在感觉简单多了。 这个框架利用了QT的现成的MainWindow与QDockWidget,这样就…

Android SurfaceFlinger——SF与HWC交互流程(六)

在上一篇 HWC2On1Adapter 初始化完成后,调用 initWithDevice() 实例化 HwcHal 对象,然后创建高级接口(IComposer),使得调用者能够通过这个接口与硬件进行交互。这里我们就来看一下 HwcHal 和 IComposer 的初始化流程。…

超级ai 必须有个,超级大的词表,必须是个向量库 faiss is all you need

说明优点图像表示流程代码实现如下全部代码 说明 使用极其庞大的词表在模型压缩和图像token化方面带来了显著优势。由于词表巨大,我们不得不利用向量数据库对词表进行搜索,以找到最匹配的token。预测出的token会再次通过嵌入矩阵(em&#xf…

短剧片源授权,类目丰富优惠多,抢先一步更新你的短剧系统片库!

前言 如今的短剧作为一种新兴的视听艺术形式,正以其独特的魅力迅速占领市场高地。为了满足广大短剧爱好者和从业者的需求,我们提供短剧片源授权服务,凭借剧场独家提供的丰富片源,助力您轻松更新短剧系统片库,抢占市场…

不见五陵高管墓,无花无酒锄做田

不见五陵高管墓,无花无酒锄做田 Golang 通用代码生成器仙童 2.4.0 电音仙女尝鲜版七已发布,此版本测试修复了 PostgreSQL 数据库自动反射功能。此版本更新修复了前端代码生成器,并修复了前端多对多界面的缺陷。PostgreSQL 的数据库反射功能刚…

安装TensorFlow报错问题ERROR: Failed building wheel for h5py解决

安装TensorFlow报错问题: 安装命令: pip install tensorflow2.12.0 -i https://pypi.tuna.tsinghua.edu.cn/simple Building wheel for h5py (PEP 517) ... error ERROR: Command errored out with exit status 1: command: /usr/bin/python3 /tmp/tmpz0y9yg…

代码生成器技术乱弹五十三,人工智能和通用代码生成器的共同点:Token

代码生成器技术乱弹五十三,人工智能和通用代码生成器的共同点:Token 现在,随着人工智能的快速发展,特别是生成式人工智能的爆火,大家逐渐熟悉了一个概念,Token。我称之为字牌。在生成式人工智能的语境下&a…

【每日刷题】Day72

【每日刷题】Day72 🥕个人主页:开敲🍉 🔥所属专栏:每日刷题🍍 🌼文章目录🌼 1. 1287. 有序数组中出现次数超过25%的元素 - 力扣(LeetCode) 2. 993. 二叉树的…

视创云展为企业虚拟展厅搭建,提供哪些功能?

在当下数字化浪潮中,如何为用户创造更富生动性和真实感的展示体验,已成为企业营销策略的核心。借助视创云展的线上虚拟3D企业展厅搭建服务,利用3D空间漫游和VR技术的融合,可以为用户呈现出一个既真实又充满想象力的全景图或三维模…

中央空调水系统安装

冷热水管: 空调冷热水管道的材质应由业主或使用方明确: 1、普通焊接钢管; 2、无缝钢管; 3、镀锌钢管; 4、PP-R管; 5、紫铜管; 6、水管内外表面应光洁、无疵孔、裂缝、结疤、层裂或气泡。…

Python12 列表推导式

1.什么是列表推导式 Python的列表推导式(list comprehension)是一种简洁的构建列表(list)的方法,它可以从一个现有的列表中根据某种指定的规则快速创建一个新列表。这种方法不仅代码更加简洁,执行效率也很…

【总线】AXI4第四课时:信号描述

大家好,欢迎来到今天的总线学习时间!如果你对电子设计、特别是FPGA和SoC设计感兴趣,那你绝对不能错过我们今天的主角——AXI4总线。作为ARM公司AMBA总线家族中的佼佼者,AXI4以其高性能和高度可扩展性,成为了现代电子系统中不可或缺的通信桥梁…

05 Pytorch 数据读取 + 二分类模型

05 Pytorch 数据读取 二分类模型05 Pytorch 数据读取 二分类模型05 Pytorch 数据读取 二分类模型 01 数据读取 DataLoader(set作为参数) 02 Dataset 从哪读,怎么读? 功能:数据从哪里读取? 如何读取…

BEV端到端视觉论文合集|从不同的视角解析BEV感知技术

随着自动驾驶技术的不断发展,基于摄像头的感知系统已成为关键,而Bird’s Eye View (BEV)大模型在其中发挥着重要作用。BEV大模型是一种将摄像头捕捉到的2D图像转换为自上而下视角的3D感知的技术,使得车辆能够更好地理解周围环境。 BEV大模型…

吴恩达机器学习 第三课 week1 无监督机器学习(下)

目录 01 学习目标 02 异常检测算法 2.1 异常检测算法的概念 2.2 基于高斯模型的异常检测 03 利用异常检测算法检测网络服务器的故障 3.1 问题描述 3.2 算法实现 3.3 问题升级 04 总结 01 学习目标 (1)理解异常检测算法(Anomaly Det…

编程精粹—— Microsoft 编写优质无错 C 程序秘诀 06:危险的行业

这是一本老书,作者 Steve Maguire 在微软工作期间写了这本书,英文版于 1993 年发布。2013 年推出了 20 周年纪念第二版。我们看到的标题是中译版名字,英文版的名字是《Writing Clean Code ─── Microsoft’s Techniques for Developing》&a…

Mac安装多个jdk环境(jdk8+jdk17)保姆级

Mac安装多个jdk环境(jdk8jdk17)保姆级 背景:新机安装开发环境发现需要找很多文章,,,,这里一篇文章安装所有环境 文章目录 Mac安装多个jdk环境(jdk8jdk17)保姆级&#x1f…

基于springboot实现火车票订票系统项目【项目源码+论文说明】

基于springboot实现火车票订票系统演示 摘要 传统办法管理信息首先需要花费的时间比较多,其次数据出错率比较高,而且对错误的数据进行更改也比较困难,最后,检索数据费事费力。因此,在计算机上安装火车票订票系统软件来…

【SpringCloud】Eureka的简单使用

本文使用的是jdk17,mysql8。 以下用两个服务做演示: 订单服务:提供订单ID,获取订单详细信息。 商品服务:提供商品ID,获取商品详细信息。 对于上篇http://t.csdnimg.cn/vcWpo 订单服务调用商品服务的时候&a…

一文读懂 HTTP 和 RPC 的区别

随着互联网技术的发展,网络通信在各种应用中扮演着至关重要的角色。无论是构建 Web 应用还是进行服务之间的交互,选择合适的通讯协议成为开发者们需要深入思考的问题。在众多协议中,HTTP(HyperText Transfer Protocol)…