DP:完全背包+多重背包问题

news2025/4/6 8:32:00

完全背包和01背包的区别就是:可以多次选

一、完全背包(模版)

【模板】完全背包_牛客题霸_牛客网

#include <iostream>
#include<string.h>
using namespace std;
const int N=1001;
int n,V,w[N],v[N],dp[N][N];
//dp[i][j]表示从前i个物品选,体积不超过j的最大价值
//dp[i][j]=max(dp[i-1][j],dp[i-1][j-v[i]]+w[i],dp[i-1][j-2v[i]]+2w[i]……)
//数学dp[i][j-v[i]]=max(dp[i-1][j-v[i]],dp[i-1][j-2v[i]]+w[i]……)
//dp[i][j]=max(dp[i-1][j],dp[i][j-v[i]])
int main() 
{
   cin>>n>>V;
   for(int i=1;i<=n;++i) cin>>v[i]>>w[i];
   //解决第一问
   for(int i=1;i<=n;++i)
    for(int j=1;j<=V;++j)
      {
        dp[i][j]=dp[i-1][j];
        if(j>=v[i]) dp[i][j]=max(dp[i][j],dp[i][j-v[i]]+w[i]);
      }  
      cout<<dp[n][V]<<endl;
    //解决第二问 //dp[i][j]表示从前i个物品选,体积正好为j的最大价值
     memset(dp,0,sizeof dp);
     //约定-1表示状态选不到 当i=0时 j>=1时  必然是没有状态的
     for(int j=1;j<=V;++j) dp[0][j]=-1;
      for(int i=1;i<=n;++i)
    for(int j=1;j<=V;++j)
      {
        dp[i][j]=dp[i-1][j];
        if(j>=v[i]&&dp[i][j-v[i]]!=-1) dp[i][j]=max(dp[i][j],dp[i][j-v[i]]+w[i]);
      }  
      cout<<(dp[n][V]==-1?0:dp[n][V])<<endl;
        return 0;
}

滚动数组的优化策略:

 区分:01背包的优化得是从右往左,而完全背包的优化得是从左往右

#include <iostream>
#include<string.h>
using namespace std;
const int N=1001;
int n,V,w[N],v[N],dp[N];
//dp[i][j]表示从前i个物品选,体积不超过j的最大价值
//dp[i][j]=max(dp[i-1][j],dp[i-1][j-v[i]]+w[i],dp[i-1][j-2v[i]]+2w[i]……)
//数学dp[i][j-v[i]]=max(dp[i-1][j-v[i]],dp[i-1][j-2v[i]]+w[i]……)
//dp[i][j]=max(dp[i-1][j],dp[i][j-v[i]])
int main()  //优化必须要从左往右
{
   cin>>n>>V;
   for(int i=1;i<=n;++i) cin>>v[i]>>w[i];
   //解决第一问
   for(int i=1;i<=n;++i)
    for(int j=v[i];j<=V;++j)
      dp[j]=max(dp[j],dp[j-v[i]]+w[i]);
      cout<<dp[V]<<endl;
    //解决第二问 //dp[i][j]表示从前i个物品选,体积正好为j的最大价值
     memset(dp,0,sizeof dp);
     //约定-1表示状态选不到 当i=0时 j>=1时  必然是没有状态的
     for(int j=1;j<=V;++j) dp[j]=-0x3f3f3f3f;
      for(int i=1;i<=n;++i)
    for(int j=v[i];j<=V;++j)
      dp[j]=max(dp[j],dp[j-v[i]]+w[i]);
      cout<<(dp[V]<0?0:dp[V])<<endl;
     return 0;
}

 二、零钱兑换

. - 力扣(LeetCode)

class Solution {
public:
    int coinChange(vector<int>& coins, int amount) {
        //dp[i][j]表示从前i个里面选 正好凑成j所需要的最少硬币个数
        //如果不选i dp[i-1][j]
        //选1个i   dp[i-1][j-coins[i-1]]+1
        //dp[i][j]=min(dp[i-1][j],dp[i-1][j-coins[i-1]]+1,dp[i-1][j-2coins[i-1]]+2……)
        //dp[i][j-coins[i-1]]=min(dp[i-1][j-coins[i-1]],dp[i-1][j-2coins[i-1]]+1……)
        //dp[i][j]=min(dp[i-1][j],dp[i][j-coins[i-1]]+1)
        const int INF=0x3f3f3f3f;
        int n=coins.size();
        vector<vector<int>> dp(n+1,vector<int>(amount+1));
        for(int j=1;j<=amount;++j) dp[0][j]=INF;
        for(int i=1;i<=n;++i)
          for(int j=1;j<=amount;++j)
           {
            dp[i][j]=dp[i-1][j];
            if(j>=coins[i-1])  dp[i][j]=min(dp[i][j],dp[i][j-coins[i-1]]+1);
           }
         return dp[n][amount]>=INF?-1:dp[n][amount];
    }
};

 滚动数组优化:

class Solution {
public:
    int coinChange(vector<int>& coins, int amount) {
        //dp[i][j]表示从前i个里面选 正好凑成j所需要的最少硬币个数
        //如果不选i dp[i-1][j]
        //选1个i   dp[i-1][j-coins[i-1]]+1
        //dp[i][j]=min(dp[i-1][j],dp[i-1][j-coins[i-1]]+1,dp[i-1][j-2coins[i-1]]+2……)
        //dp[i][j-coins[i-1]]=min(dp[i-1][j-coins[i-1]],dp[i-1][j-2coins[i-1]]+1……)
        //dp[i][j]=min(dp[i-1][j],dp[i][j-coins[i-1]]+1)
        const int INF=0x3f3f3f3f;
        int n=coins.size();
        vector<int> dp(amount+1,INF);
        dp[0]=0;
        for(int i=1;i<=n;++i)
          for(int j=coins[i-1];j<=amount;++j)
            dp[j]=min(dp[j],dp[j-coins[i-1]]+1);
         return dp[amount]>=INF?-1:dp[amount];
    }
};

三、零钱兑换II

. - 力扣(LeetCode)

class Solution {
public:
    int change(int amount, vector<int>& coins) {
       //dp[i][j]表示从前i个硬币选,正好可以凑成总金额的硬币组合数
       //如果i不选 dp[i][j]+=dp[i-1][j]
       //如果i选1个 dp[i][j]+=dp[i-1][j-coins[i-1]]
       //dp[i][j]+=dp[i-1][j-coins[i-1]]+=dp[i-1][j-2coins[i-1]]……
       //dp[i][j]+=dp[i][j-coins[i-1]]
       int n=coins.size();
       //分析初始化 当j=0 都是一种选法  当i=0时 无论如何凑不出j 状态无效
       vector<vector<int>> dp(n+1,vector<int>(amount+1));
       dp[0][0]=1;
       for(int i=1;i<=n;++i)
         for(int j=0;j<=amount;++j) //不会越界,可以从0开始
         {
           dp[i][j]+=dp[i-1][j];
           if(j>=coins[i-1]) dp[i][j]+=dp[i][j-coins[i-1]];
         }
       return dp[n][amount];
    }
};

滚动数组做优化:

class Solution {
public:
    int change(int amount, vector<int>& coins) {
       //dp[i][j]表示从前i个硬币选,正好可以凑成总金额的硬币组合数
       //如果i不选 dp[i][j]+=dp[i-1][j]
       //如果i选1个 dp[i][j]+=dp[i-1][j-coins[i-1]]
       //dp[i][j]+=dp[i-1][j-coins[i-1]]+=dp[i-1][j-2coins[i-1]]……
       //dp[i][j]+=dp[i][j-coins[i-1]]
       int n=coins.size();
       //分析初始化 当j=0 都是一种选法  当i=0时 无论如何凑不出j 状态无效
      vector<int> dp(amount+1);
       dp[0]=1;
       for(int i=1;i<=n;++i)
         for(int j=coins[i-1];j<=amount;++j) //不会越界,可以从0开始
           dp[j]+=dp[j-coins[i-1]]; //+= 0不会影响填表
       return dp[amount];
    }
};

四、完全平方数

. - 力扣(LeetCode)

class Solution {
public:
//不能用贪心策略 比如说1 4 9   组成12    444比9111好
    int numSquares(int n) {
      //1 4 9 16 25……
      //dp[i][j]表示从前i个数选,刚好为j的最少数量
      const int INF=0x3f3f3f3f;
      int m=sqrt(n);
      vector<int> dp(n+1,INF);
      //i=0的时候 不可能凑成j  j=0时 i取1
      dp[0]=0;
    for(int i=1;i<=m;++i)
      for(int j=i*i;j<=n;++j)
         dp[j]=min(dp[j],dp[j-i*i]+1);
      return dp[n]; //一定能选得到,因为1是平方数 所以必然能凑出来
    }
};

五、数位成本和为目标值的最大数字(经典dp还原)

. - 力扣(LeetCode)

class Solution {
public:
    string largestNumber(vector<int>& nums, int t) {
      //考虑数值长度问题,每个数字有相应成本,且长度均为1 
      //有若干物品,求给定费用下所能选择的最大价值  (完全背包)
      //得到的就是最大位数 然后从后往前想办法还原回来
      vector<int> dp(t+1,-0x3f3f3f3f);//会有不存在的状态
      //dp[i][j]表示前i个数选择 正好为j的最大选择数目
      dp[0]=1;
      for(int i=1;i<=9;++i)
        for(int j=nums[i-1];j<=t;++j)
          dp[j]=max(dp[j],dp[j-nums[i-1]]+1);
          //此时 dp[t]里存的就是选择的最大位数 然后要想办法进行还原
          if(dp[t]<0) return "0";
          string ret;
          //开始还原 从后往前还原
          for(int i=9;i>=1;--i)
          {
             int u=nums[i-1];
             while(t>=u&&dp[t]==dp[t-u]+1)//说明选到这个数了
               {
                ret+=to_string(i);
                t-=u;
               }
          }
        return ret;
    }
};

六、获得分数的方法数(多重背包)

. - 力扣(LeetCode)

 该种类型题的具体分析请看第7题!!

class Solution {
public:
    const int MOD=1e9+7;
    int waysToReachTarget(int target, vector<vector<int>>& types) {
        //dp[i][j]表示从前i个数选 恰好分数为j的方案数 选择方式是types[1] 
        //如果不选这个数 dp[i-1][j]
        //如果选 1个  dp[i-1][j-p[0]] 
        //如果选2个  dp[i-1][j-2p[0]]
        int n=types.size();
        vector<vector<int>> dp(n+1,vector<int>(target+1));
        //初始化当i为0时 
        dp[0][0]=1;
        for(int i=1;i<=n;++i)
        {
            int count=types[i-1][0],mark=types[i-1][1]; //count表示这道题的题数(选择次数)  mark表示这道题的分数
            for(int j=0;j<=target;++j)
            {
                dp[i][j]=dp[i-1][j];
                for(int k=1;k<=count;++k)
                {
                    if(j>=k*mark) dp[i][j]=(dp[i][j]+dp[i-1][j-k*mark])%MOD;
                }
            }
        }
        return dp[n][target];
    }
};

滚动数组优化 

class Solution {
public:
    const int MOD=1e9+7;
    int waysToReachTarget(int target, vector<vector<int>>& types) {
        //dp[i][j]表示从前i个数选 恰好分数为j的方案数 选择方式是types[1] 
        //如果不选这个数 dp[i-1][j]
        //如果选 1个  dp[i-1][j-p[0]] 
        //如果选2个  dp[i-1][j-2p[0]]
        vector<int> dp(target+1);
        //初始化当i为0时 
        dp[0]=1;
        for(auto&p:types)
        {
            int count=p[0],mark=p[1]; //count表示这道题的题数(选择次数)  mark表示这道题的分数       //会用到上一层的状态,所以滚动数组应该要从后往前
            for(int j=target;j>=0;--j)
            {
                count=min(count,j/mark);
                for(int k=1;k<=count;++k)
                   dp[j]=(dp[j]+dp[j-k*mark])%MOD;
            }
        }
        return dp[target];
    }
};

进阶优化:

class Solution {
public:
    const int MOD=1e9+7;
    int waysToReachTarget(int target, vector<vector<int>>& types) {
        //dp[i][j]表示从前i个数选 恰好分数为j的方案数 选择方式是types[1] 
        //如果不选这个数 dp[i-1][j]
        //如果选 1个  dp[i-1][j-p[0]] 
        //如果选2个  dp[i-1][j-2p[0]]
        //dp[i][j]+=dp[i-1][j-p[0]]……
        //dp[i][j-p[0]+=dp[i-1]][j-]
        vector<int> dp(target+1);
        //初始化当i为0时 
        dp[0]=1;
        for(auto&p:types)
        {
            int count=p[0],mark=p[1]; //count表示这道题的题数(选择次数)  mark表示这道题的分数       //会用到上一层的状态,所以滚动数组应该要从后往前
            for(int j=mark;j<=target;++j)
            dp[j]=(dp[j]+dp[j-mark])%MOD;
            for(int j=target;j>=(count+1)*mark;--j)
            dp[j] = (dp[j] - dp[j - mark*(count + 1)] + MOD) % MOD; // 两个同余前缀和的差
            //防止搞出负数
        }
        return dp[target];
    }
};

七、带和限制的子多重集合的数目(经典多重背包模版题)

. - 力扣(LeetCode)

 直接做滚动数组优化:

class Solution {
public:
      const int MOD=1e9+7;
    int countSubMultisets(vector<int>& nums, int l, int r) {
        //01背包 每个数选或者不选 限制范围是l-r
        //dp[i][j]表示从前i个数选  凑成和恰好为j
        //但是需要一个哈希表来帮助我们知道每个数究竟可以选多少次
        unordered_map<int,int> hash;
        int total=0;
        for(auto&e:nums) 
        {
              total+=e;
              ++hash[e];
        }
        if(l>total) return 0;
        r=min(r,total);
        vector<int> dp(r+1);
        //初始化 i=0时 无数可选
        dp[0]=hash[0]+1;
        hash.erase(0);
        int t=0;
        for(auto[x,c]:hash) //x是数 c是他的限制次数
          for(int j=r;j>=x;--j)
           {
               c=min(c,j/x);
             for(int k=1;k<=c;++k)    //费时间 想办法用新的状态
                 dp[j]=(dp[j]+dp[j-k*x])%MOD; 
           }
         int sum=0;
         for(int j=l;j<=r;++j)
            sum=(sum+dp[j])%MOD;
            return sum;
    }
};

我们会发现由于数据量太大,用循环会超时,因此我们在这里不能用k那一层循环!!得换个方式

class Solution {
public:
      const int MOD=1e9+7;
    int countSubMultisets(vector<int>& nums, int l, int r) {
        //01背包 每个数选或者不选 限制范围是l-r
        //dp[i][j]表示从前i个数选  凑成和恰好为j
        //但是需要一个哈希表来帮助我们知道每个数究竟可以选多少次
        //类比完全背包的状态 dp[]
        unordered_map<int,int> hash;
        int total=0;
        for(auto&e:nums) 
        {
              total+=e;
              ++hash[e];
        }
        if(l>total) return 0;
        r=min(r,total);
        vector<int> dp(r+1);
        dp[0]=hash[0]+1;
        hash.erase(0);
        // dp[i][j]+=  dp[i-1][j-x]+dp[i-1][j-2*x]……
        // dp[i][j-x]+=dp[i-1][j-2x]+dp[i-1][j-3x]……
        int sum=0;
        for(auto[x,c]:hash)
        {
             sum = min(sum+x*c,r);//目前为止 能选的元素和之多为sum 
            for (int j = x; j <= sum; j++)
                dp[j] = (dp[j] + dp[j - x]) % MOD; // 原地计算同余前缀和
             for (int j =sum;j >= x * (c + 1); j--)
                dp[j] = (dp[j] - dp[j - x * (c + 1)] + MOD) % MOD; // 两个同余前缀和的差
                //防止搞出负数
        }
        
         int ret=0;
         for(int j=l;j<=r;++j)
            ret=(ret+dp[j])%MOD;
            return ret;
    }
};

 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1845654.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

从社交网络到元宇宙:Facebook的战略转型

随着科技的迅猛发展和数字化时代的深入&#xff0c;社交网络已不再局限于简单的信息交流和社交互动&#xff0c;而是逐步向更广阔、更深远的虚拟现实空间——元宇宙&#xff08;Metaverse&#xff09;转变。作为全球最大的社交网络平台之一&#xff0c;Facebook正在积极推动这一…

从新手小白到红酒大咖:解锁红酒品鉴的终极秘籍,升级之路全攻略

在五彩斑斓的饮品世界中&#xff0c;红酒以其深邃的色泽、丰富的口感和悠久的历史&#xff0c;吸引了无数人的目光。对于红酒的初学者来说&#xff0c;从小白到品鉴师的道路或许充满了未知与挑战&#xff0c;但只要掌握了正确的知识和方法&#xff0c;就能够轻松踏入这个美妙的…

RAG实操教程langchain+Milvus向量数据库创建你的本地知识库 二

Miluvs 向量数据库 关于 Milvui 可以参考我的前两篇文章 • 一篇文章带你学会向量数据库Milvus&#xff08;一&#xff09;[1]• 一篇文章带你学会向量数据库Milvus&#xff08;二&#xff09;[2] 下面我们安装 pymilvus 库 pip install --upgrade --quiet pymilvus如果你…

SpringBoot整合justauth实现多种方式的第三方登陆

目录 0.准备工作 1.引入依赖 2.yml文件 3. Controller代码 4.效果 参考 0.准备工作 你需要获取三方登陆的client-id和client-secret 以github为例 申请地址&#xff1a;Sign in to GitHub GitHub 1.引入依赖 <?xml version"1.0" encoding"UTF-8&quo…

代码走查的一个实例

1996年6月23日至7月1日&#xff0c;我被点名到四川某单位协助排查某系统的技术问题。 我不懂该系统的原理&#xff0c;也不懂硬件&#xff0c;只能从软件角度分析问题。 那时&#xff0c;我所在单位已经为一家美国公司做了3年的软件第三方独立验证和测试&#xff0c;从中学到…

【51单片机基础教程】点亮led

文章目录 前言51单片机点亮LED的原理硬件部分软件部分51单片机的寄存器编程步骤proteus仿真点亮一个led 点亮多个ledproteus仿真代码 流水灯 总结 前言 单片机&#xff08;Microcontroller Unit, MCU&#xff09;是一种集成电路&#xff0c;广泛应用于各种电子产品中。作为嵌入…

1. zookeeper分布式协调者

zookeeper分布协调者 一、zookeeper介绍1、软件设计架构1.1 单体架构1.2 SOA架构/分布式1.3 微服务架构 二、zookeeper角色1、角色2、选举机制3、znode类型 三、zookeeper集群部署1、环境规划2、安装jdk3、安装配置zookeeper3.1 安装zookeeper3.2 编辑配置文件3.3 创建myid文件…

LCP 61. 气温变化趋势

题目 力扣城计划在两地设立「力扣嘉年华」的分会场&#xff0c;气象小组正在分析两地区的气温变化趋势&#xff0c;对于第 i ~ (i1) 天的气温变化趋势&#xff0c;将根据以下规则判断&#xff1a; 若第 i1 天的气温 高于 第 i 天&#xff0c;为 上升 趋势若第 i1 天的气温 等…

WPF 深入理解六、ControlTemplate控件模板

ControlTemplate 定义 控件模板用于来定义控件的外观、样式&#xff0c;还可通过控件模板的触发器(ControlTemplate.Triggers)修改控件的行为、响应动画等。 对与WPF当中,每个控件都是无外观的,这意味着我们可以完全自定义其可视元素的外观,但是不能修改其内部的行为&#xf…

springboot相关的一些知识

SpringBoot可以同时处理多少请求 SpringBoot默认的内嵌容器是Tomcat&#xff0c;所以SpringBoot可以同时处理多少请求取决于Tomcat。 SpringBoot中处理请求数量相关的参数有四个&#xff1a; server.tomcat.thread.min-spare&#xff1a;最少的工作线程数&#xff0c;默认大小…

AI简历:实习简历制作的智能解决方案是什么?

时间匆匆&#xff0c;我们又迎来了毕业季。大学生活丰富多彩&#xff0c;学业同样重要。毕业答辩对于每位大学生来说都是一道重要的门槛。回想起那些为了答辩准备而熬夜、焦虑的日子&#xff0c;那份努力至今难忘。 虽然答辩的准备工作可能相当繁琐&#xff0c;但幸运的是&…

【MySQL系列】MySQL 字符集的演变与选择

&#x1f49d;&#x1f49d;&#x1f49d;欢迎来到我的博客&#xff0c;很高兴能够在这里和您见面&#xff01;希望您在这里可以感受到一份轻松愉快的氛围&#xff0c;不仅可以获得有趣的内容和知识&#xff0c;也可以畅所欲言、分享您的想法和见解。 推荐:kwan 的首页,持续学…

【数据结构与算法】树的存储,森林 详解

树的几种存贮结构(双亲表示法、孩子表示法、孩子兄弟表示法)的优缺点&#xff0c;各自适应的运算。 双亲表示法&#xff1a; 优点&#xff1a;方便查找双亲及其祖先结点缺点&#xff1a; 查找孩子和兄弟结点比较费事未表示出结点之间的先后次序 适应的运算&#xff1a;查找节点…

基于国产飞腾2000制作的paddleocr hubserving服务docker镜像文件

paddleocr hubserving国产化飞腾、鲲鹏armv8 api服务镜像制作 一、编译paddle paddle官网说明在处理器飞腾2000和鲲鹏需要自行编译&#xff08;FT2000/Kunpeng 920 2426SK&#xff09; 如果自己编译可以参考官网飞腾/鲲鹏下从源码编译-使用文档-PaddlePaddle深度学习平台 二…

深入理解神经网络:BP神经网络、ANN、多层感知机、多层编码器和多层线性层

这里写目录标题 深入理解神经网络&#xff1a;BP神经网络、ANN、多层感知机、多层编码器和多层线性层**人工神经网络&#xff08;ANN&#xff09;****多层感知机&#xff08;MLP&#xff09;****BP神经网络&#xff08;反向传播神经网络&#xff09;****多层编码器****多层线性…

Mysqld数据库管理

一.Mysqld数据库类型 常用的数据类型 int 整型 无符号[0-4294967296&#xff08;2的32次方&#xff09;-1]&#xff0c;有符号[-2147483648&#xff08;2的31次方&#xff09;-2147483647]float单精度浮点 4字节32位double双精度浮点 8字节64位char固定长度的字符类型…

最新Springboot小程序医院核酸检测服务系统

采用技术 最新Springboot小程序医院核酸检测服务系统的设计与实现~ 开发语言&#xff1a;Java 数据库&#xff1a;MySQL 技术&#xff1a;SpringBootMyBatis 工具&#xff1a;IDEA/Ecilpse、Navicat、Maven 页面展示效果 管理员页面 医护人员管理 普通管理员管理 接种进…

行车记录仪文件夹“0字节”现象解析与恢复策略

一、行车记录仪文件夹“0字节”现象描述 行车记录仪作为现代驾驶中的必备设备&#xff0c;其储存的视频数据对于事故记录和取证至关重要。然而&#xff0c;有时车主们可能会遇到这样一个问题&#xff1a;行车记录仪的某个文件夹内的文件突然变成了0字节大小&#xff0c;无法正…

Transformer的上下文学习能力是哪来的?

有理论基础&#xff0c;我们就可以进行深度优化了。 为什么 transformer 性能这么好&#xff1f;它给众多大语言模型带来的上下文学习 (In-Context Learning) 能力是从何而来&#xff1f;在人工智能领域里&#xff0c;transformer 已成为深度学习中的主导模型&#xff0c;但人们…

Python多语言欧拉法和预测校正器实现

&#x1f4dc;流体力学电磁学运动学动力学化学和电路中欧拉法 &#x1f4dc;流体力学电磁学运动学动力学化学和电路中欧拉法示例&#xff1a;Python重力弹弓流体晃动微分方程模型和交直流电阻电容电路 ✒️多语言实现欧拉法和修正欧拉法 在数学和计算科学中&#xff0c;欧拉…