RAG实操教程langchain+Milvus向量数据库创建你的本地知识库 二

news2025/1/12 1:40:39

Miluvs 向量数据库

关于 Milvui 可以参考我的前两篇文章

  • • 一篇文章带你学会向量数据库Milvus(一)[1]
  • • 一篇文章带你学会向量数据库Milvus(二)[2]

下面我们安装 pymilvus

pip install --upgrade --quiet  pymilvus

如果你使用的不是 Miluvs 数据库,那也没关系,langchain 已经给我们分装了几十种向量数据库,你选择你需要的数据库即可。本文中我们是系列教程中一篇,所以我们使用 Miluvs 向量库。

Embedding model

图片

这里需要明确的两个功能是:

  • embedding Model所做中工作就是将 imageDocumentAudio等信息向量化.
  • vectorBD 负责保存多维向量

我这里使用 AzureOpenAIEmbeddings 是个收费的模型。有开源的 embedding Model可以部署在本地使用,如果你的机器性能足够好。如果要本地部署可以参考 docker 部署 llama2 模型 。

这里我使用 AzureOpenAIEmbeddings, 相关配置我放到了 .env 文件中,并使用 dotenv 加载。

在这里插入图片描述

这里各位可以依据自己的情况设定即可。

向量化+存储

上面已经说明了向量库以及embedding model的关系。我们直接使用 langchain提供的工具连完成 embeddingstore

在这里插入图片描述

执行完成上面的代码,我们就将pdf中文档内容保存到 vector_db 中。

图片

图片

字段 vector 就是保存的多维向量。

Milvus search

虽然现在我们还没有使用 LLM 的任何能力,但是我们已经可以使用 vector 的搜索功能了。

在这里插入图片描述

similarity_searchsimilarity_search_with_score 的区别就是 similarity_search_with_score搜索出来会带有一个 score 分值的字段,某些情况下这个 score 很有用。

langchain 不仅仅提供了基础的搜索能力,还有其他的搜索方法,感兴趣的可以去研究下。

RAG Chat

准备工作我们已经就绪,接下来我们使用langchain 构建我们的chat。

既然是聊天也就是我们跟模型的一问一答的形式来体现。这两年LLM的出现,关于 LLM 的知识里面我们估计最熟悉就是角色设定了。

  • • 什么是角色设定:下面 OpenAI 给出的回答:

在大型语言模型(LLM)中,角色设定指的是为AI助手创建一个特定的人格或身份。这个设定包括AI助手的说话风格、知识领域、价值观、行为方式等各个方面。通过这些设定,AI助手可以扮演不同的角色,比如专业的客服、风趣幽默的聊天对象,或是特定领域的专家顾问。

角色设定可以让AI助手的回答更加符合特定的场景和用户的期望。比如一个扮演医生的AI助手,会用专业术语解释病情,给出严谨的建议;而一个扮演朋友的AI助手,会用轻松的语气聊天,给出生活化的提示。

此外,角色设定还可以帮助限定AI助手的行为边界,避免其做出不恰当或有害的回应。设定明确的角色定位,有助于AI助手更好地理解自己的身份和职责,从而提供更加合适和有帮助的回答。

总的来说,角色设定让AI助手的对话更加自然和人性化,让用户获得更好的使用体验。同时它也是引导AI助手行为、确保其安全可控的重要手段。

在 chat中我们同样也需要以及简单的 prompt:

template = """You are an assistant for question-answering tasks. Use the following pieces of retrieved context to answer the question. If you don't know the answer, just say that you don't know. 

Question: {question} 

Context: {context} 

Answer:
"""

这个prompt中很明显我们设定了两个变量 question, context

question:这个会在后面被替换为用户的输入,也就是用户的问题。

context: 这个变量我们在后面会替换为向量检索出来的内容。

请思考下:我们最后提供给LLm的内容只是用户的问题呢还是问题连带内容一起给到LLM?

chat chain

基于上面的内容我们基本的工作已经完成,下面就是我们基于 langchain构建chat

在这里插入图片描述

对于初学者可能有个问题就是:为什么这里有个 AzureChatOpenAI() 的实例 llm

这是个好问题,对于初学者会被各种 LLM 搞晕😵‍💫。

  • AzureOpenAIEmbeddings() 这是一个负责将文本向化话的 model
  • AzureChatOpenAI() 是一个 chat 模型。负责聊天的 model。

基于 langchain 的链式调用构建 chat

在这里插入图片描述

这里看到 prompt中的两个变量context, question 会被替换。

为什么我们要写变量在 prompt中?

  • • 工程化:我们在做LLM相关的工作最重要的就是prompt工程。这也是个重要的话题后面再说
  • • 灵活:

测试

在这里插入图片描述

输出:

流式请求示例:
curl --location 'http://{ip}/prod/model/api/infillingStreaming' \
--header 'Content-Type: application/json' \
--data '{
    "model": "codegeex",    
    "prompt": "package problem1;\nclass Solution{\n    public int \nremoveDuplicates(int[] nums) {\n        int cnt = 1;\n        for (int i = 1; \ni < nums.length; ++i)\n            if (nums[i] != nums[i - 1]) {\n             \n   nums[cnt] = nums[i];\n                ++cnt;\n            }\n        return \ncnt;\n    }\\n}",    
    "max_tokens": 1024,    
    "temperature": 0.2,    
    "top_p": 0.95,    
    "stream": true
}'

对比pdf中的内容,很明显这个结果就是对的:

图片

总结:

本文主要是 Milvus 向量数据实战总结。

  • • LLM 痛点以及解决方案
  • • RAG 是什么,为什么选用RAG。
  • langchain 文档加载器,embedding modelchat model
  • • 文档拆分的注意点,embedding modelchat model区别。
  • • chat 示例代码。

如何学习AI大模型?

作为一名热心肠的互联网老兵,我决定把宝贵的AI知识分享给大家。 至于能学习到多少就看你的学习毅力和能力了 。我已将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

一、全套AGI大模型学习路线

AI大模型时代的学习之旅:从基础到前沿,掌握人工智能的核心技能!

img

二、640套AI大模型报告合集

这套包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。

img

三、AI大模型经典PDF籍

随着人工智能技术的飞速发展,AI大模型已经成为了当今科技领域的一大热点。这些大型预训练模型,如GPT-3、BERT、XLNet等,以其强大的语言理解和生成能力,正在改变我们对人工智能的认识。 那以下这些PDF籍就是非常不错的学习资源。

img

四、AI大模型商业化落地方案

img

作为普通人,入局大模型时代需要持续学习和实践,不断提高自己的技能和认知水平,同时也需要有责任感和伦理意识,为人工智能的健康发展贡献力量。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1845647.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

SpringBoot整合justauth实现多种方式的第三方登陆

目录 0.准备工作 1.引入依赖 2.yml文件 3. Controller代码 4.效果 参考 0.准备工作 你需要获取三方登陆的client-id和client-secret 以github为例 申请地址&#xff1a;Sign in to GitHub GitHub 1.引入依赖 <?xml version"1.0" encoding"UTF-8&quo…

代码走查的一个实例

1996年6月23日至7月1日&#xff0c;我被点名到四川某单位协助排查某系统的技术问题。 我不懂该系统的原理&#xff0c;也不懂硬件&#xff0c;只能从软件角度分析问题。 那时&#xff0c;我所在单位已经为一家美国公司做了3年的软件第三方独立验证和测试&#xff0c;从中学到…

【51单片机基础教程】点亮led

文章目录 前言51单片机点亮LED的原理硬件部分软件部分51单片机的寄存器编程步骤proteus仿真点亮一个led 点亮多个ledproteus仿真代码 流水灯 总结 前言 单片机&#xff08;Microcontroller Unit, MCU&#xff09;是一种集成电路&#xff0c;广泛应用于各种电子产品中。作为嵌入…

1. zookeeper分布式协调者

zookeeper分布协调者 一、zookeeper介绍1、软件设计架构1.1 单体架构1.2 SOA架构/分布式1.3 微服务架构 二、zookeeper角色1、角色2、选举机制3、znode类型 三、zookeeper集群部署1、环境规划2、安装jdk3、安装配置zookeeper3.1 安装zookeeper3.2 编辑配置文件3.3 创建myid文件…

LCP 61. 气温变化趋势

题目 力扣城计划在两地设立「力扣嘉年华」的分会场&#xff0c;气象小组正在分析两地区的气温变化趋势&#xff0c;对于第 i ~ (i1) 天的气温变化趋势&#xff0c;将根据以下规则判断&#xff1a; 若第 i1 天的气温 高于 第 i 天&#xff0c;为 上升 趋势若第 i1 天的气温 等…

WPF 深入理解六、ControlTemplate控件模板

ControlTemplate 定义 控件模板用于来定义控件的外观、样式&#xff0c;还可通过控件模板的触发器(ControlTemplate.Triggers)修改控件的行为、响应动画等。 对与WPF当中,每个控件都是无外观的,这意味着我们可以完全自定义其可视元素的外观,但是不能修改其内部的行为&#xf…

springboot相关的一些知识

SpringBoot可以同时处理多少请求 SpringBoot默认的内嵌容器是Tomcat&#xff0c;所以SpringBoot可以同时处理多少请求取决于Tomcat。 SpringBoot中处理请求数量相关的参数有四个&#xff1a; server.tomcat.thread.min-spare&#xff1a;最少的工作线程数&#xff0c;默认大小…

AI简历:实习简历制作的智能解决方案是什么?

时间匆匆&#xff0c;我们又迎来了毕业季。大学生活丰富多彩&#xff0c;学业同样重要。毕业答辩对于每位大学生来说都是一道重要的门槛。回想起那些为了答辩准备而熬夜、焦虑的日子&#xff0c;那份努力至今难忘。 虽然答辩的准备工作可能相当繁琐&#xff0c;但幸运的是&…

【MySQL系列】MySQL 字符集的演变与选择

&#x1f49d;&#x1f49d;&#x1f49d;欢迎来到我的博客&#xff0c;很高兴能够在这里和您见面&#xff01;希望您在这里可以感受到一份轻松愉快的氛围&#xff0c;不仅可以获得有趣的内容和知识&#xff0c;也可以畅所欲言、分享您的想法和见解。 推荐:kwan 的首页,持续学…

【数据结构与算法】树的存储,森林 详解

树的几种存贮结构(双亲表示法、孩子表示法、孩子兄弟表示法)的优缺点&#xff0c;各自适应的运算。 双亲表示法&#xff1a; 优点&#xff1a;方便查找双亲及其祖先结点缺点&#xff1a; 查找孩子和兄弟结点比较费事未表示出结点之间的先后次序 适应的运算&#xff1a;查找节点…

基于国产飞腾2000制作的paddleocr hubserving服务docker镜像文件

paddleocr hubserving国产化飞腾、鲲鹏armv8 api服务镜像制作 一、编译paddle paddle官网说明在处理器飞腾2000和鲲鹏需要自行编译&#xff08;FT2000/Kunpeng 920 2426SK&#xff09; 如果自己编译可以参考官网飞腾/鲲鹏下从源码编译-使用文档-PaddlePaddle深度学习平台 二…

深入理解神经网络:BP神经网络、ANN、多层感知机、多层编码器和多层线性层

这里写目录标题 深入理解神经网络&#xff1a;BP神经网络、ANN、多层感知机、多层编码器和多层线性层**人工神经网络&#xff08;ANN&#xff09;****多层感知机&#xff08;MLP&#xff09;****BP神经网络&#xff08;反向传播神经网络&#xff09;****多层编码器****多层线性…

Mysqld数据库管理

一.Mysqld数据库类型 常用的数据类型 int 整型 无符号[0-4294967296&#xff08;2的32次方&#xff09;-1]&#xff0c;有符号[-2147483648&#xff08;2的31次方&#xff09;-2147483647]float单精度浮点 4字节32位double双精度浮点 8字节64位char固定长度的字符类型…

最新Springboot小程序医院核酸检测服务系统

采用技术 最新Springboot小程序医院核酸检测服务系统的设计与实现~ 开发语言&#xff1a;Java 数据库&#xff1a;MySQL 技术&#xff1a;SpringBootMyBatis 工具&#xff1a;IDEA/Ecilpse、Navicat、Maven 页面展示效果 管理员页面 医护人员管理 普通管理员管理 接种进…

行车记录仪文件夹“0字节”现象解析与恢复策略

一、行车记录仪文件夹“0字节”现象描述 行车记录仪作为现代驾驶中的必备设备&#xff0c;其储存的视频数据对于事故记录和取证至关重要。然而&#xff0c;有时车主们可能会遇到这样一个问题&#xff1a;行车记录仪的某个文件夹内的文件突然变成了0字节大小&#xff0c;无法正…

Transformer的上下文学习能力是哪来的?

有理论基础&#xff0c;我们就可以进行深度优化了。 为什么 transformer 性能这么好&#xff1f;它给众多大语言模型带来的上下文学习 (In-Context Learning) 能力是从何而来&#xff1f;在人工智能领域里&#xff0c;transformer 已成为深度学习中的主导模型&#xff0c;但人们…

Python多语言欧拉法和预测校正器实现

&#x1f4dc;流体力学电磁学运动学动力学化学和电路中欧拉法 &#x1f4dc;流体力学电磁学运动学动力学化学和电路中欧拉法示例&#xff1a;Python重力弹弓流体晃动微分方程模型和交直流电阻电容电路 ✒️多语言实现欧拉法和修正欧拉法 在数学和计算科学中&#xff0c;欧拉…

用群辉NAS打造影视墙(Video Station篇)

目录 一、群辉套件Video Station 1、安装 2、进入系统 3、配置刮削器 4、获取TMDB网站API密钥 5、配置DNS (1)开启SSH (2)使用终端工具连接到NAS (3)修改hosts文件 (4)再次测试连接 6、设置目录 二、手机端APP设置 三、电视端APP 四、解决影视信息错误 N…

数仓开发那些事_番外

一位神州的正式员工&#xff08;没错&#xff0c;就是之前文章中出现的实习生&#xff09;&#xff1a;一闪&#xff0c;你今年涨工资了吗&#xff1f; 一闪&#xff1a;mad&#xff0c;一年辛苦到头只涨了500米 神州员工&#xff1a;你去年绩效不是优秀吗&#xff0c;怎么就涨…

洛杉矶裸机云服务器怎么用

洛杉矶裸机云服务器是一种结合了物理服务器性能和云服务灵活性的高性能计算服务。它为用户提供了高效、安全的计算和存储能力&#xff0c;特别适合需要大量数据处理和快速响应的应用。具体分析如下&#xff0c;rak部落小编为您整理发布洛杉矶裸机云服务器怎么用。 1. 硬件配置选…