[深度学习]--分类问题的排查错误的流程

news2024/11/26 12:49:02

原因复现:
原生的.pt 好使, 转化后的 CoreML不好使, 分类有问题。

yolov8 格式的支持情况

                   Format     Argument           Suffix    CPU    GPU
0                 PyTorch            -              .pt   True   True
1             TorchScript  torchscript     .torchscript   True   True
2                    ONNX         onnx            .onnx   True   True
3                OpenVINO     openvino  _openvino_model   True  False
4                TensorRT       engine          .engine  False   True
5                  CoreML       coreml       .mlpackage   True  False
6   TensorFlow SavedModel  saved_model     _saved_model   True   True
7     TensorFlow GraphDef           pb              .pb   True   True
8         TensorFlow Lite       tflite          .tflite   True  False
9     TensorFlow Edge TPU      edgetpu  _edgetpu.tflite   True  False
10          TensorFlow.js         tfjs       _web_model   True  False
11           PaddlePaddle       paddle    _paddle_model   True   True
12                   NCNN         ncnn      _ncnn_model   True   True

这里可以看到CoreML 只支持cpu, 尼玛tflite也是只支持cpu的



def test_coreml():
    detect_weight = '/home/justin/Desktop/code/python_project/Jersey-Number/runs/detect/train64/weights/best.pt'
    model_detect = YOLO(detect_weight)
    results = model_detect(source="/home/justin/Desktop/code/python_project/Jersey-Number/zr_yz.MP4",stream=True,classes=[3])

    class_weight = '/home/justin/Desktop/code/python_project/Jersey-Number/runs/classify/train7/weights/best.mlpackage'
    class_weight = '/home/justin/Desktop/code/python_project/Jersey-Number/runs/classify/train7/weights/best.mlpackage'
    model_class = YOLO(class_weight)
    # 要使用的字体
    fontFace = cv2.FONT_HERSHEY_SIMPLEX
    fontScale = 3
    thickness = 1
    img_count = 0

    for result in results:
        img_count+=1
        if img_count == 6:
            a = 1
        boxes = result.boxes  # Boxes object for bounding box outputs
        for box in boxes:
            cls = box.cls.item()
            conf = box.conf.item()
            if conf > 0.5:
                x1,y1,x2,y2 = box.xyxy.tolist()[0]
                x1,y1,x2,y2 = int(x1),int(y1),int(x2),int(y2)
                orig_img = result.orig_img
                # H,W = orig_img.orig_shape
                cv2.imwrite("/home/justin/Desktop/code/python_project/Jersey-Number/runs/imgs"+"{:06d}-raw.jpg".format(img_count),orig_img)
                cropped_image = orig_img[y1:y2,x1:x2]
                # res_number_class = model_class(cropped_image,save_txt=True,save=True)
                res_number_class = model_class(cropped_image, device = "cpu")
                cv2.rectangle(orig_img, (int(x1), int(y1)), (int(x2), int(y2)), (255, 0, 0), 2) 
                for r in res_number_class:
                    if hasattr(r,"probs"):
                        if r.probs.top1conf.item() > 0.2:
                            class_name = r.names[r.probs.top1]
                            (width, height), bottom = cv2.getTextSize(class_name, fontFace, fontScale=fontScale, thickness=thickness)
                            cv2.putText(orig_img, class_name+" conf:"+str(r.probs.top1conf.item()), (x1 - width, y1-height), fontFace, fontScale, color=(0, 0, 255), thickness=thickness,
                                            lineType=cv2.LINE_AA)
                cv2.imwrite("/home/justin/Desktop/code/python_project/Jersey-Number/runs/imgs"+"{:06d}.jpg".format(img_count),orig_img)

报错的这句话值得看一眼:
sklearn不支持,tensorflow和torch没测试过,可能会有问题。 先跑跑再说吧

Loading /home/justin/Desktop/code/python_project/Jersey-Number/runs/classify/train7/weights/best.mlpackage for CoreML inference...
scikit-learn version 1.4.2 is not supported. Minimum required version: 0.17. Maximum required version: 1.1.2. Disabling scikit-learn conversion API.
TensorFlow version 2.13.1 has not been tested with coremltools. You may run into unexpected errors. TensorFlow 2.12.0 is the most recent version that has been tested.
Torch version 2.3.0+cu121 has not been tested with coremltools. You may run into unexpected errors. Torch 2.1.0 is the most recent version that has been tested.

所以还要降级,真是麻烦,tensorflow是因为要转android侧的模型。
这里要给个参数,来指定cpu复现
res_number_class = model_class(cropped_image, device = “cpu”)

这意思是不能用pytorch 跑了吗? @todo, 然后用pytorch 2.0的环境试一下看看怎么样?@todo,
核心诉求是要把coreml的模型加载起来,看看是不是存在一样的错误

Exception has occurred: Exception
Model prediction is only supported on macOS version 10.13 or later.
  File "/home/justin/Desktop/code/python_project/Jersey-Number/zr_yz.py", line 76, in test_coreml
    res_number_class = model_class(cropped_image, device = "cpu")
                       ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
  File "/home/justin/Desktop/code/python_project/Jersey-Number/zr_yz.py", line 88, in <module>
    test_coreml()
Exception: Model prediction is only supported on macOS version 10.13 or later.
detect 参数
detect_conf = 0.5172230005264282
切割位置: x1,y1,x2,y2
1. 原始位置:[1648.0953369140625, 882.2176513671875, 1682.9732666015625, 980.842041015625]
2.强制转成int 为后面切出这个区域做准备(1648, 882, 1682, 980)

分类输出结果:

top1:64

top1conf:tensor(0.9994, device='cuda:0')

top5:[64, 53, 10, 0, 20]

top5conf:tensor([9.9943e-01, 4.8942e-04, 1.9284e-05, 1.8095e-05, 8.8464e-06], device='cuda:0')

垃圾

shit CoreML模型只能在mac 上跑, 而且只能用CoreMl 跑么??? @todo???

确实只能在mac上跑
ref:
coreml的文档:
https://developer.apple.com/documentation/coreml
coremltool的文档:
https://apple.github.io/coremltools/docs-guides/
一段python代码:

import coremltools as ct
import PIL
import torch
import numpy as np

def get_x1y1x2y2(coordinate,img):
    width,height = img.size()
    center_x = int(coordinate[0] * width)
    center_y = int(coordinate[1] * height)
    img_w = int(coordinate[2]*width)
    img_h = int(coordinate[3]*height)
    return center_x, center_y, img_w, img_h

def ml_test_detect():
    mlmodel = ct.models.MLModel('/Users/smkj/Desktop/Code/justin/head_person_hoop_number_v8n.mlpackage')
    print(mlmodel)
    img = PIL.Image.open("/Users/smkj/Desktop/Code/justin/imgs000006-raw.jpg").resize((640,384))
    res = mlmodel.predict({"image":img})
    confidence_max_list = list(np.array(res['confidence']).argmax(axis=1))
    # array([0.86775684, 0.8630705 , 0.01861118, 0.09405255], dtype=float32)
    for row_index, class_id in enumerate(confidence_max_list):
        if class_id == 3:
            coordinate = res['coordinates'][row_index]
            x1,y1,x2,y2 = 555 - 12 / 2, 333  - 36 / 2, 555 + 12/2, 333 + 36/2
            im=img.crop((x1, y1, x2, y2))
            im.save("bbb.jpg")
    print(res)
# print(img)
def ml_test_classify():
    img = PIL.Image.open("/Users/smkj/Desktop/Code/justin/bbb.jpg").resize((64,64))

    mlmodel = ct.models.MLModel('/Users/smkj/Desktop/Code/justin/classification.mlpackage')
    res = mlmodel.predict({"image":img})
    max_key = max(res['classLabel_probs'], key=res['classLabel_probs'].get)
    print("class_name:",max_key, "confidence:",res['classLabel_probs'].get(max_key))
    a = 1
ml_test_classify()

在mac上安装opencv实在是太费劲了,各位自求多福吧!
用这个可以替代opencv: pip install pillow

在这里插入图片描述

置信度也是99.99

coreml不爽的点是必须要固定尺寸??? @todo 也许是我用惯了动态尺寸的原因。 anyway,今天调试了一天,在两个电脑上装了环境,算是搞定了。!!!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1845576.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

Unet已死,Transformer当立!详细解读基于DiT的开源视频生成大模型EasyAnimate

Diffusion Models视频生成-博客汇总 前言&#xff1a;最近阿里云PIA团队开源了基于Diffusion Transformer结构的视频生成模型EasyAnimate&#xff0c;并且提出了专门针对视频的slice VAE&#xff0c;对于目前基于Unet结构的视频生成最好如SVD形成了降维打击&#xff0c;不论是生…

快消品经销商的仓库管理,有哪些是必须注意的事项?

快消品经销商仓库管理是一个复杂而关键的过程&#xff0c;它涉及到产品的存储、保管、发货以及库存控制等多个环节。一个高效的仓库管理系统不仅有助于减少成本&#xff0c;提高运营效率&#xff0c;还能确保产品质量和满足客户需求。以下是一些快消品经销商在仓库管理过程中需…

JDBC之API(DriverManager)详解

之前在 JDBC 的快速入门写代码的时候&#xff0c;遇到了很多的API。这篇博客主要学习一些API。 目录 一、API&#xff08;介绍&#xff09; 二、JDBC之API——DriverManager &#xff08;1&#xff09;DriverManager &#xff08;获取 Connection 的连接对象&#xff09; 1、…

玩转热门游戏,选对系统是关键!游戏专用电脑系统在这里!

如果我们给电脑安装上游戏专用系统&#xff0c;那么就能体验到更加流畅、稳定的游戏运行环境&#xff0c;享受沉浸式的游戏体验。但是&#xff0c;许多新手用户不知道去哪里才能下载到玩游戏专用的电脑系统&#xff1f;接下来小编给大家分享玩游戏专用电脑系统&#xff0c;这些…

Windows应急响应靶机 - Web2

一、靶机介绍 应急响应靶机训练-Web2 前景需要&#xff1a;小李在某单位驻场值守&#xff0c;深夜12点&#xff0c;甲方已经回家了&#xff0c;小李刚偷偷摸鱼后&#xff0c;发现安全设备有告警&#xff0c;于是立刻停掉了机器开始排查。 这是他的服务器系统&#xff0c;请你…

【YOLOv5/v7改进系列】引入特征融合网络——ASFYOLO

一、导言 ASF-YOLO结合空间和尺度特征以实现精确且快速的细胞实例分割。在YOLO分割框架的基础上&#xff0c;通过引入尺度序列特征融合(SSFF)模块来增强网络的多尺度信息提取能力&#xff0c;并利用三重特征编码器(TFE)模块融合不同尺度的特征图以增加细节信息。此外&#xff…

尚硅谷大数据技术ClickHouse教程-笔记01【ClickHouse单机安装、数据类型】

视频地址&#xff1a;一套上手ClickHouse-OLAP分析引擎&#xff0c;囊括Prometheus与Grafana_哔哩哔哩_bilibili 01_尚硅谷大数据技术之ClickHouse入门V1.0 尚硅谷大数据技术ClickHouse教程-笔记01【ClickHouse单机安装、数据类型】尚硅谷大数据技术ClickHouse教程-笔记02【表引…

前端基础操作1——利用nvm任意切换(管理)node版本

在实际前端项目开发过程中&#xff0c;同时开发多个项目或者切换新项目时&#xff0c;因为node版本问题造成项目无法运行的问题比比皆是&#xff0c;这时候通过nvm管理切换不同版本的node&#xff0c;就能很快进入开发模式&#xff0c;避免因为环境问题浪费大量精力&#xff0c…

太爱这种数据可视化效果,零售行业的都看过来

在当今数字化浪潮下&#xff0c;数据可视化已成为零售行业洞察市场趋势、优化运营决策的关键技术。奥威BI零售数据分析方案凭借其卓越的数据可视化效果&#xff0c;成为零售企业的得力助手。接下来就通过BI节假日分析报表来简单地感受一下。 注&#xff1a;该BI节假日分析报表…

ArcGIS消除碎图斑

​ 点击下方全系列课程学习 点击学习—>ArcGIS全系列实战视频教程——9个单一课程组合系列直播回放 点击学习——>遥感影像综合处理4大遥感软件ArcGISENVIErdaseCognition 这次是上次 我们经常在相交、标识、更新等操作后或者是栅格转矢量可能存在很多的细碎图斑&#…

反激开关电源输出整流二极管选型及计算

1、电压 输出整流二极管电压应力&#xff1a;VoutVin/n尖峰电压余量5373/14.22010&#xff08;选60V左右的二极管&#xff09; 通常为了降低电压尖峰&#xff0c;需要在二极管上加RC吸收&#xff0c;来降低尖峰 2、电流 整流二极管的电流也是需要根据变压器输出绕组的峰值电流来…

深度学习500问——Chapter12:网络搭建及训练(3)

文章目录 12.3.5 Caffe有哪些接口 12.4 网络搭建有什么原则 12.4.1 新手原则 12.4.2 深度优先原则 12.4.3 卷积核size一般为奇数 12.4.4 卷积核不是越大越好 12.5 有哪些经典的网络模型值得我们去学习的 12.6 网络训练有哪些技巧 12.6.1 合适的数据集 12.6.2 合适的预…

console.log日志展示

console.log日志展示 1.特定颜色打印 console.log("%caaa","color:#1e80ff") 解释&#xff1a;重点就是%c和color。

IDEA2023中使用run Dashboard面板?实现批量运行微服务

1、直接点击Add service--->Run Configuration Type---->Spring Boot 2、这样就出现了run Dashboard面板&#xff0c;可同时运行多个工程模块&#xff0c;shift选中所有启动类组命名&#xff08;Group Configurations&#xff09; 3、启动所有的项目

linux分区

挂载只改变数据存储的分区位置&#xff0c;不改变文件系统的目录结构&#xff0c;无论怎么挂载linux系统的分区仍然是/根分区和其子目录/opt、/etc、/home等等 临时挂载 添加新磁盘模拟新设备接入&#xff0c;无论使用什么虚拟机都可以 重启电脑reboot&#xff0c;执行lsblk&a…

RestTemple请求GET接口403

问题描述 使用oss接口获取资源的时候&#xff0c;通过浏览器可以直接下载&#xff0c;在代码中使用RestTemplate的get方式访问的时候&#xff0c;出现403错误 问题排查 因为返回状态码是403&#xff0c;就想着是不是授权问题&#xff0c;因为有的接口是有防抓取规则的&…

《Cloud Native Data Center Networking》(云原生数据中心网络设计)读书笔记 -- 02 Clos拓扑

本章回答以下问题&#xff1a; 什么是 Clos 拓扑&#xff0c;它与“接入 - 汇聚 - 核心”拓扑有何不同?Clos 拓扑的特征是什么?Clos 拓扑对数据中心网络的影响是什么? Clos拓扑 云原生数据中心基础设施的先行者们想要构建一种支持大规模水平扩展网络。 基本的Clos拓扑如图…

C++ #pragma pack(n)

一、#pragma简介 #pragma是预处理指令的一种&#xff0c;它的作用是设定编译器的状态、指定编译器完成特定任务。 &#xff08;预处理阶段&#xff1a;在编译阶段之前进行&#xff09; #pragma相当于是由各个厂商开发扩展的&#xff0c;因此可能因编译器或操作系统不同而有所差…

【论文阅读】-- TSR-TVD:时变数据分析和可视化的时间超分辨率

TSR-TVD: Temporal Super-Resolution for Time-Varying Data Analysis and Visualization 摘要1 引言2 相关工作3 我们的循环生成方法3.1 损失函数3.2 网络架构 4 结果与讨论4.1 数据集和网络训练4.2 结果4.3 讨论 5 结论和未来工作致谢参考文献附录1 训练算法及优化2 网络分析…

基于 Arm 虚拟硬件的心电图(ECG)疾病分类应用开发实战

基于 Arm 虚拟硬件的心电图(ECG)疾病分类应用开发实战 目录 文章目录 [toc] 一、实验背景1. 嵌入式软件开发的基本流程2. Arm 虚拟硬件镜像产品简介 二、实验目标三、实验步骤简介四、实验前准备1. 订阅使用 Arm 虚拟硬件镜像的百度智能云云服务器 BCC 实例1.1 百度智能云账号准…