[论文笔记]Are Large Language Models All You Need for Task-Oriented Dialogue?

news2024/12/22 16:22:04

引言

今天带来论文Are Large Language Models All You Need for Task-Oriented Dialogue?的笔记。

主要评估了LLM在完成多轮对话任务以及同外部数据库进行交互的能力。在明确的信念状态跟踪方面,LLMs的表现不及专门的任务特定模型。然而,如果为它们提供了正确的槽值,它们可以通过生成的回复引导对话顺利结束。

1. 总体介绍

image-20240617164838808

本篇工作在任务导向对话(Task Oriented Dialouge,TOD)上评估LLM的性能。为此引入了基于LLM的TOD对话流水线(图1)。使用状态跟踪和响应生成作为两个主要的步骤,隐含了对话策略的功能。在零样本设定下,模型仅接收领域描述,在少样本设定下,使用了一些检索到的示例。在https://github.com/vojtsek/to-llm-bot上发布了实验代码。

2. 相关工作

介绍了大语言模型和指令微调。 重点是下面两个:

基于语言模型的TOD建模 Zhang等人和Peng等人引入了基于预训练语言模型的任务导向对话建模,他们遵循了Lei等人提出的基于文本的状态编码和两阶段生成方法:首先使用语言模型解码结构化的信念状态,表示为文本。然后使用信念状态检索数据库信息,并再次调用语言模型生成响应,该响应以信念状态和检索到的信息为条件。其他人则提出了生成模型与检索式方法的结合。这些方法都在领域内的数据上进行了微调,和作者采用的纯上下文学习方法形成了对比。

少样本对话建模 是一种专注于从少量领域内样例中学习对话的神经模型的方法之一,最早的这种方法是基于循环神经网络的可训练混合代码网络,其中部分组件采用手工制作。较新的方法利用了预训练Transformer语言模型的能力。Hu等人使用了LLMs和上下文学习来进行信念状态跟踪,将任务制定为SQL查询生成。

3. 方法

image-20240617170233786

图2: 流程详细描述。(0)作为预处理步骤,对训练集的一个子集进行编码,以便用于检索少样本示例。给定用户输入,进行以下操作:(1)检测领域,检索相关示例(在少样本设置中),并构建初始提示。(2)使用LLM推理信念状态。基于此,检索数据库信息,并构建另一个包含状态和数据库结果的提示。(3)要求LLM提供最终的响应。

图2显示了所提出的流程的总体描述。系统由预训练的LLM和(可选的)上下文存储在向量数据库中组成。在每个对话轮次中执行三次LLM调用,使用特定的提示。首先,LLM执行领域检测和状态跟踪。更新后的信念状态用于数据库查询,并将查询结果用于后续基于LLM的响应生成步骤。在少样本设置中,上下文存储用于存储训练集中的有限数量的示例,这些示例根据与对话上下文的相似性进行检索,并包含在LLM提示中。

3.1 提示词构建

目标是比较所选LLMs的原始能力,因此作者不关注提示工程技术,并选择在本工作中所有LLMs都使用的通用提示。为所有示例定义一个单一领域检测提示,以及给定数据集中每个领域的一对提示:状态跟踪提示(见表1)和响应提示

image-20240617170737725

Definition: 从关于酒店的对话中提取实体与值。
以冒号分隔的"实体:值"形式呈现。
不要在冒号之间加入空格。
使用连字符分隔不同的"实体:数值"对。
需要提取的数值有:
- "pricerange":酒店的价格

[对话历史]
顾客:"我想找一个便宜的住所。"

领域检测提示包括任务描述和两个静态领域检测示例。除了一般指令外,每个状态跟踪提示包含领域描述、相关槽位列表、对话历史记录和当前用户话语。响应提示不包含每个领域的槽位列表,但是代替的它们包含当前的信念状态和数据库结果。在少样本设置中,每个跟踪和响应提示还包含从上下文存储中检索的正例和负例示例。提示示例详见附录的表5和表6。

3.2 领域检测和状态追踪

在状态跟踪过程中,每轮对LM进行两次提示:首先,检测当前活动(active,激活)的领域,然后输出在当前轮次中发生变化或出现的槽值。然后,使用这些输出来更新累积的全局信念状态。

使用两个提示步骤是因为需要模型在多个领域的情况下进行操作,即处理跨多个领域的对话。因此,需要能够检测当前活动的领域。通过首先使用一个领域检测的提示来实现这一点。

一旦获得了活动领域的预测,可以在处理信念状态预测的第二个提示中包含手动设计的领域描述。表1提供了一个用于状态跟踪的提示示例。对于少样本变体,从上下文存储中检索与活动领域相关的少样本示例。

初步实验表明,LLMs很难在每个轮次中始终输出所有活动的槽值。因此,只建模状态更新,采用MinTL方法。在这种方法中,模型只生成在当前轮次中发生变化的槽-值对。然后,使用这些轮次级别的更新来累积全局信念状态。为了获得机器可读的输出,以便用于数据库查询或API调用,在提示中指定模型应该提供JSON格式的输出,并且提供的少样本示例也相应进行了格式化处理。

3.3 响应生成

当前的信念状态用于查询数据库,以找到与活动领域中所有用户指定的槽位匹配的条目。根据信念状态和数据库结果,可以直接生成响应。给定的LLM提示包括对话历史用户话语信念状态和数据库结果(以及在少样本设置中检索到的示例),并要求模型提供一个合适的系统响应。

生成去标记化的响应,即用占位符替换槽位值。除了简化模型的任务外,去标记化的输出还使我们能够评估成功率。提示指定模型应将实体值作为去标记化的占位符提供,并相应构建任何少样本示例。

3.4 上下文存储

引入了一个包含编码对话上下文的存储。这个上下文存储是可选的,只在少样本提示变体中需要。使用来自固定长度历史窗口的对话上下文作为要编码到向量数据库中的键。一旦检索到相关示例,将它们包含在提示中以更好地指导模型。一些LLM还依赖于负面(对立地)示例。因此,采用了Peng等的一致性分类任务方法来生成负面示例:采用一些检索到的信念状态示例,通过将一些正确的槽值替换为随机值来破坏它们,并将它们作为负面示例呈现在提示中。

4. 实验设定

5. 实验结果

5.1 领域检测

image-20240617172944051

各种模型的领域检测准确率差异很大,这很可能会影响检索到的少样本示例的质量和后续提示的适当性。然而,领域检测是基于轮次的,有一些情况(例如提供地址、道别等)总是以相同的方式处理,即使它们在形式上属于不同的领域。因此,并非所有来自被错误分类的领域的检索示例一定包含无关的上下文。

image-20240617173110639

使用理论上正确的领域并没有提高性能,甚至在某些情况下性能变差。这表明模型预测的领域通常已经足够好,并且额外提供领域信息并不会对最终的系统性能产生贡献。

5.2 信念状态跟踪

image-20240617173512282

在比较各个模型的结果时,ChatGPT明显优于其他模型。少样本与零样本设置似乎并不对结果产生很大影响,除了GPT-NeoXT模型。

5.3 响应生成

总体而言,BLEU分数较低,远低于监督式最先进模型。Tk-Instruct和ChatGPT在这方面是最强的,并且表现大致相当。

5.4 对话级表现

image-20240617173956265

对话成功的结果在表2中提供,LLMs和监督式自定义模型的性能之间存在较大差距。ChatGPT似乎优于其他模型,与状态跟踪类似。然而,在零样本设置中,差异并不那么明显。在大多数情况下,添加检索到的少样本示例是有帮助的。当提供理论上正确的信念状态时,检索示例的贡献更为明显,这种情况下对于所有模型都有帮助。图5探讨了上下文存储大小对对话成功率的影响。似乎通过仅提供少量示例而不是零样本提示可以实现最大的改进,但增加用于检索的示例池的大小并不会带来进一步的性能提升。

6 模型分析

介绍了人工评估和错误分析。

错误行为可以分为可恢复的提示错误和固有错误,前者可以通过提示工程修复,后者属于不容易通过提示工程修复的错误,比如幻觉和不相关的内容。

7 结论

即使在提供上下文中的少样本示例的情况下,LLM在信念状态跟踪方面表现不佳。如果提供正确的信念状态,模型可以成功地与用户进行交互,提供有用的信息并满足用户的需求。因此,精心选择代表性示例并将LLM与领域内的信念跟踪器结合起来,可以成为任务导向型对话流程中可行的选择。

8. 限制

模型对特定提示的选择很敏感。具体而言,信念状态的期望格式在模型之间有所变化,并且存在一些模型特定的指令。

A 提示词构建

image-20240617175315596

image-20240617175349096

image-20240617175404353

总结

⭐ 作者测试了基于LLM做领域识别、状态追踪和响应生成。但是状态追踪的效果不好,如果想用LLM做TOD需要额外加入状态追踪逻辑。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1843708.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

GitLab项目组相关操作(创建项目组Group、创建项目组的项目、为项目添加成员并赋予权限)

天行健,君子以自强不息;地势坤,君子以厚德载物。 每个人都有惰性,但不断学习是好好生活的根本,共勉! 文章均为学习整理笔记,分享记录为主,如有错误请指正,共同学习进步。 君不见,黄河之水天上来,奔流到海不复回。 君不见,高堂明镜悲白发,朝如青丝暮成雪。 ——《将…

傅里叶级数在不连续点会怎么样???

文章目录 一、前言背景二、用狄利克雷核表达傅里叶级数三、狄利克雷核与狄拉克函数四、傅里叶级数在不连续点的表示五、吉伯斯现象的解释六、总结参考资料 一、前言背景 笔者最近在撸《信号与系统》,写下此博客用作记录和分享学习笔记。由于是笔者为电子爱好者&…

模拟原神圣遗物系统-小森设计项目,设计圣遗物(生之花,死之羽,时之沙,空之杯,理之冠)抽象类

分析圣遗物 在圣遗物系统,玩家操控的是圣遗物的部分 因此我们应该 物以类聚 人与群分把每个圣遗物的部分,抽象出来 拿 生之花,死之羽为例 若是抽象 类很好的扩展 添加冒险家的生之花 时候继承生之花 并且名称冒险者- 生之花 当然圣遗物包含…

ECharts 雷达图案例002 - 诈骗性质分析

ECharts 雷达图案例002 - 诈骗性质分析 📊 ECharts 雷达图案例002 - 诈骗性质分析 深入挖掘数据背后的故事,用可视化手段揭示诈骗行为的模式和趋势。 🔍 案例亮点 创新的数据展示方式,让复杂的诈骗数据一目了然。定制化的雷达图…

Redis分片集群搭建

主从模式可以解决高可用、高并发读的问题。但依然有两个问题没有解决: 海量数据存储高并发写 要解决这两个问题就需要用到分片集群了。分片的意思,就是把数据拆分存储到不同节点,这样整个集群的存储数据量就更大了。 Redis分片集群的结构如…

[leetcode hot 150]第十五题,三数之和

题目: 给你一个整数数组 nums ,判断是否存在三元组 [nums[i], nums[j], nums[k]] 满足 i ! j、i ! k 且 j ! k ,同时还满足 nums[i] nums[j] nums[k] 0 。请 你返回所有和为 0 且不重复的三元组。 注意:答案中不可以包含重复…

Opencv学习项目3——pytesseract

上一次我们使用pytesseract.image_to_data(img)来检测文本,这次我们来只检测数字 项目演示 可以看到,我们只检测了数字其他的并没有检测出来 代码实现 前面两次介绍了opencv的画矩形和设置文本,这次就直接用了,不太明白的可以看…

Unity和UE免费领恐怖书本头怪兽角色模型恐怖或奇幻游戏monster适合FPS类型PBR202406202143

Unity和UE免费领恐怖书本头怪兽角色模型恐怖或奇幻游戏monster适合FPS类型PBR202406202143 Unity恐怖书本头怪兽角色模型:https://prf.hn/l/zpBqgVl UE恐怖书本头怪兽角色模型:https://prf.hn/l/4PzY1Qy 作者其他资产:https://prf.hn/l/0…

(创新)基于VMD-CNN-BiLSTM的电力负荷预测—代码+数据

目录 一、主要内容: 二、运行效果: 三、VMD-BiLSTM负荷预测理论: 四、代码数据下载: 一、主要内容: 本代码结合变分模态分解( Variational Mode Decomposition,VMD) 和卷积神经网络(Convolutional neu…

C++学习(23)

#学习自用# union 共用体和结构体相似&#xff0c;但是共用体一次只能占用一个成员的内存&#xff0c;所有成员共用同一地址。 #include<iostream> using namespace std; union A {int int_val;float float_val; }a; int main() {a.float_val 2.0f;cout << a.f…

Sping源码(九)—— Bean的初始化(非懒加载)— Bean的创建方式(factoryMethod)

序言 前面文章介绍了在Spring中多种创建Bean实例的方式&#xff0c;包括采用FactoryBean的方式创建对象、使用反射创建对象、自定义BeanFactoryPostProcessor。 这篇文章继续介绍Spring中创建Bean的形式之一——factoryMethod。方法用的不多&#xff0c;感兴趣可以当扩展了解。…

电子书(chm)-加载JS--CS上线

免责声明: 本文仅做技术交流与学习... 目录 cs--web投递 html(js)代码 html生成chm工具--EasyCHM 1-选择powershell 模式 生成 2-选择bitsadmin模式生成 chm反编译成html cs--web投递 cs配置监听器--->攻击---->web投递---> 端口选择没占用的, URL路径到时候会在…

HALCON-从入门到入门-霍夫识别直线

1.废话 霍夫变换是一种特征检测&#xff0c;被广泛应用在图像分析、计算机视觉以及数位影像处理。霍夫变换是用来辨别找出物件中的特征&#xff0c;例如&#xff1a;线条。他的算法流程大致如下&#xff0c;给定一个物件、要辨别的形状的种类&#xff0c;算法会在参数空间中执…

【JavaEE】Spring Boot MyBatis详解(二)

一.解决数据库字段名和对象属性名冲突的问题. 产生这个问题的本质原因就是Java 属性名和数据库字段的命名规范不同. 这个问题的本质就是查询数据库返回了字段,但是不知道和Java对象的哪个属性相对应 1.注解的解决方法 注解的解决方式有三种: 方式一:给数据库字段起别名. 本质…

Zookeeper 一、Zookeeper简介

1.分布式系统定义及面临的问题 分布式系统是同时跨越多给物理主机&#xff0c;独立运行的多个软件所组成的系统。类比一下&#xff0c;分布式系统就是一群人一起干活。人多力量大&#xff0c;每个服务器的算力是有限的&#xff0c;但是通过分布式系统&#xff0c;由n个服务器组…

Linux环境如何彻底卸载感干净RabbitMQ并重新安装

Linux&#xff08;Centos7&#xff09;环境如何彻底卸载感干净RabbitMQ并重新安装 我这个是超级简单的&#xff0c;如果安装不好&#xff0c;顺着网线来找我 一、卸载RabbitMq相关的软件包 1. 先停止RabbitMq服务 systemctl stop rabbitmq-server2. 查看rabbitmq安装的相关…

Microsoft Edge浏览器安装crx拓展插件教程

1、首先打开edge浏览器&#xff0c;点击顶部地址栏。 2、在地址栏中输入"edge://flags/#extensions-on-edge-urls"并按下回车。2、在地址栏中输入"edge://flags/#extensions-on-edge-urls"并按下回车。 3、进入后&#xff0c;将图示选项改为“已禁用”。 …

Redis缓存的一些概念性问题

目录 缓存模型和思路 缓存更新策略 数据库和缓存不一致 缓存与数据库双写一致 缓存穿透 缓存雪崩 缓存击穿 速度快,好用&#xff0c;内存的读写性能远高于磁盘,缓存可以大大降低用户访问并发量带来的服务器读写压力 缓存模型和思路 标准的操作方式就是查询数据库之前先…

多线程下JVM内存模型 和 volatile关键字

1、线程的概念 线程&#xff08;thread&#xff09;是操作系统能够进行运算调度的最小单位。它被包含在进程之中&#xff0c;是进程中的实际运作单位。一条线程指的是进程中一个单一顺序的控制流&#xff0c;一个进程中可以并发多个线程&#xff0c;每条线程并行执行不同的任务…

从复用性角度阐述中台建设

目录 复用性中台定义深思中台建设产品线形态何时演变中台能力落地中台 业务中台架构总结 技术学习永不止步&#xff0c;最近也是看了很多关于架构设计相关的专栏&#xff0c;慢慢总结出来一部分知识&#xff0c;代入自己的思考与理解&#xff0c;以及结合并反思自己之前公司的架…