基于DE2-115平台的VGA显示实验

news2024/12/23 6:01:15

一.任务需求

  • 深入了解VGA协议,理解不同显示模式下的VGA控制时序参数(行频、场频、水平/垂直同步时钟周期、显示后沿/前沿等概念和计算方式);
  • 通过Verilog编程,在至少2种显示模式下(640480@60Hz,1024768@75Hz)分别实现以下VGA显示,并对照VGA协议信号做时序分析:1)屏幕上显示彩色条纹;2)显示自定义的汉字字符(姓名-学号);
  • 在Verilog代码中,将行、场同步信号中,故意分别加入一定 ms延时(用delay命令),观察会出现什么现象。

二.vga协议介绍

VGA(Video Graphics Array)视频图形阵列是IBM于1987年提出的一个使用模拟信号的电脑显示标准。VGA接口即电脑采用VGA标准输出数据的专用接口。VGA接口共有15针,分成3排,每排5个孔,显卡上应用最为广泛的接口类型,绝大多数显卡都带有此种接口。

1. VGA协议的一些关键特点和组成部分:

  • 定义与应用:
    VGA是使用模拟信号的一种视频传输标准,用于连接计算机和显示设备。
    它不仅支持CRT(阴极射线管)显示器,也被用于LCD(液晶显示器)等现代显示技术。
  • 接口结构:
    VGA接口通常是一个15针的D-sub连接器,分为三排,每排五个孔。
    针脚包括RGB(红绿蓝)三原色信号、水平和垂直同步信号(HSYNC和VSYNC),以及其他控制信号。
  • 信号类型:
    RGB信号:传输图像的颜色信息,通常有RGB 8位(RGB332)、RGB 16位(RGB565)和RGB 24位(RGB888)等格式。
    同步信号:包括水平同步(HSYNC)和垂直同步(VSYNC),用于控制图像在屏幕上的显示位置。
  • 扫描方式:
    VGA支持逐行扫描和隔行扫描两种方式。逐行扫描可以减少屏幕闪烁,提高图像质量。
  • 时序:
    VGA信号的时序包括行时序和帧时序,决定了图像的刷新率和分辨率。
  • 电气特性:
    VGA信号的电气特性包括信号的峰值电压、阻抗匹配等,通常使用75欧姆的阻抗。
  • 兼容性:
    尽管现代显示技术已经发展到了数字信号传输,如HDMI和DisplayPort,但VGA仍然被广泛支持,作为最低标准存在。
  • 硬件实现:
    VGA接口可以通过专用的视频转换DAC芯片或R-2R电阻网络来实现模拟信号的输出。
  • 软件实现:
    在软件层面,需要根据VGA协议生成相应的RGB数据和同步信号,以控制图像的正确显示。
  • 局限性:
    VGA作为模拟信号传输方式,在长距离传输时可能会有信号衰减和干扰问题。
    随着数字显示技术的发展,VGA逐渐被更高清晰度和更少干扰的数字接口所取代。
    在这里插入图片描述
管脚含义
1红基色
2绿基色
3蓝基色
4地址码 ID Bit
5自测试 ( 各家定义不同 )
6红地
7绿地
8蓝地
9电源
10数字地
11地址码
12地址码
13行同步
14场同步
15地址码

三.开始实验

1.前期准备

tcl文件配置管脚:

set_location_assignment PIN_Y2  -to OSC_50
set_location_assignment PIN_D12 -to VGA_B[7]
set_location_assignment PIN_D11 -to VGA_B[6]
set_location_assignment PIN_C12 -to VGA_B[5]
set_location_assignment PIN_A11 -to VGA_B[4]
set_location_assignment PIN_B11 -to VGA_B[3]
set_location_assignment PIN_C11 -to VGA_B[2]
set_location_assignment PIN_A10 -to VGA_B[1]
set_location_assignment PIN_B10 -to VGA_B[0]
set_location_assignment PIN_F11 -to VGA_BLANK
set_location_assignment PIN_A12 -to VGA_CLK
set_location_assignment PIN_C9  -to VGA_G[7]
set_location_assignment PIN_F10 -to VGA_G[6]
set_location_assignment PIN_B8  -to VGA_G[5]
set_location_assignment PIN_C8  -to VGA_G[4]
set_location_assignment PIN_H12 -to VGA_G[3]
set_location_assignment PIN_F8  -to VGA_G[2]
set_location_assignment PIN_G11 -to VGA_G[1]
set_location_assignment PIN_G8  -to VGA_G[0]
set_location_assignment PIN_G13 -to VGA_HS
set_location_assignment PIN_H10 -to VGA_R[7]
set_location_assignment PIN_H8  -to VGA_R[6]
set_location_assignment PIN_J12 -to VGA_R[5]
set_location_assignment PIN_G10 -to VGA_R[4]
set_location_assignment PIN_F12 -to VGA_R[3]
set_location_assignment PIN_D10 -to VGA_R[2]
set_location_assignment PIN_E11 -to VGA_R[1]
set_location_assignment PIN_E12 -to VGA_R[0]
set_location_assignment PIN_C10 -to VGA_SYNC
set_location_assignment PIN_C13 -to VGA_VS

条纹显示代码:

module VGA_colorbar_test(
OSC_50,     //原CLK2_50时钟信号
VGA_CLK,    //VGA自时钟
VGA_HS,     //行同步信号
VGA_VS,     //场同步信号
VGA_BLANK,  //复合空白信号控制信号  当BLANK为低电平时模拟视频输出消隐电平,此时从R9~R0,G9~G0,B9~B0输入的所有数据被忽略
VGA_SYNC,   //符合同步控制信号      行时序和场时序都要产生同步脉冲
VGA_R,      //VGA绿色
VGA_B,      //VGA蓝色
VGA_G);     //VGA绿色
 input OSC_50;     //外部时钟信号CLK2_50
 output VGA_CLK,VGA_HS,VGA_VS,VGA_BLANK,VGA_SYNC;
 output [7:0] VGA_R,VGA_B,VGA_G;
 parameter H_FRONT = 16;     //行同步前沿信号周期长
 parameter H_SYNC = 96;      //行同步信号周期长
 parameter H_BACK = 48;      //行同步后沿信号周期长
 parameter H_ACT = 640;      //行显示周期长
 parameter H_BLANK = H_FRONT+H_SYNC+H_BACK;        //行空白信号总周期长
 parameter H_TOTAL = H_FRONT+H_SYNC+H_BACK+H_ACT;  //行总周期长耗时
 parameter V_FRONT = 11;     //场同步前沿信号周期长
 parameter V_SYNC = 2;       //场同步信号周期长
 parameter V_BACK = 31;      //场同步后沿信号周期长
 parameter V_ACT = 480;      //场显示周期长
 parameter V_BLANK = V_FRONT+V_SYNC+V_BACK;        //场空白信号总周期长
 parameter V_TOTAL = V_FRONT+V_SYNC+V_BACK+V_ACT;  //场总周期长耗时
 reg [10:0] H_Cont;        //行周期计数器
 reg [10:0] V_Cont;        //场周期计数器
 wire [7:0] VGA_R;         //VGA红色控制线
 wire [7:0] VGA_G;         //VGA绿色控制线
 wire [7:0] VGA_B;         //VGA蓝色控制线
 reg VGA_HS;
 reg VGA_VS;
 reg [10:0] X;             //当前行第几个像素点
 reg [10:0] Y;             //当前场第几行
 reg CLK_25;
 always@(posedge OSC_50)begin 
      CLK_25=~CLK_25;         //时钟
 end 

 assign VGA_SYNC = 1'b0;   //同步信号低电平
 assign VGA_BLANK = ~((H_Cont<H_BLANK)||(V_Cont<V_BLANK));  //当行计数器小于行空白总长或场计数器小于场空白总长时,空白信号低电平
 assign VGA_CLK = ~CLK_to_DAC;  //VGA时钟等于CLK_25取反
 assign CLK_to_DAC = CLK_25;

 always@(posedge CLK_to_DAC)begin
        if(H_Cont<H_TOTAL)           //如果行计数器小于行总时长
            H_Cont<=H_Cont+1'b1;      //行计数器+1
        else H_Cont<=0;              //否则行计数器清零
        if(H_Cont==H_FRONT-1)        //如果行计数器等于行前沿空白时间-1
            VGA_HS<=1'b0;             //行同步信号置0
        if(H_Cont==H_FRONT+H_SYNC-1) //如果行计数器等于行前沿+行同步-1
            VGA_HS<=1'b1;             //行同步信号置1
        if(H_Cont>=H_BLANK)          //如果行计数器大于等于行空白总时长
            X<=H_Cont-H_BLANK;        //X等于行计数器-行空白总时长   (X为当前行第几个像素点)
        else X<=0;                   //否则X为0
end

 always@(posedge VGA_HS)begin
        if(V_Cont<V_TOTAL)           //如果场计数器小于行总时长
            V_Cont<=V_Cont+1'b1;      //场计数器+1
        else V_Cont<=0;              //否则场计数器清零
        if(V_Cont==V_FRONT-1)       //如果场计数器等于场前沿空白时间-1
            VGA_VS<=1'b0;             //场同步信号置0
        if(V_Cont==V_FRONT+V_SYNC-1) //如果场计数器等于行前沿+场同步-1
            VGA_VS<=1'b1;             //场同步信号置1
        if(V_Cont>=V_BLANK)          //如果场计数器大于等于场空白总时长
            Y<=V_Cont-V_BLANK;        //Y等于场计数器-场空白总时长    (Y为当前场第几行)  
        else Y<=0;                   //否则Y为0
end

 reg valid_yr;

 always@(posedge CLK_to_DAC)begin
    if(V_Cont == 10'd32)         //场计数器=32时
        valid_yr<=1'b1;           //行输入激活
    else if(V_Cont==10'd512)     //场计数器=512时
        valid_yr<=1'b0;           //行输入冻结
 end

 wire valid_y=valid_yr;       //连线   
 reg valid_r;     

 always@(posedge CLK_to_DAC)begin
    if((H_Cont == 10'd32)&&valid_y)     //行计数器=32时
        valid_r<=1'b1;                   //像素输入激活
    else if((H_Cont==10'd512)&&valid_y) //行计数器=512时 
        valid_r<=1'b0;                   //像素输入冻结
 end

 wire valid = valid_r;               //连线
 assign x_dis=X;       //连线X
 assign y_dis=Y;       //连线Y
 // reg[7:0] char_bit;
 // always@(posedge CLK_to_DAC)
 //     if(X==10'd144)char_bit<=9'd240;   //当显示到144像素时准备开始输出图像数据
 //     else if(X>10'd144&&X<10'd384)     //左边距屏幕144像素到416像素时    416=144+272(图像宽度)
 //         char_bit<=char_bit-1'b1;       //倒着输出图像信息
         
 reg[29:0] vga_rgb;                //定义颜色缓存
 always@(posedge CLK_to_DAC) begin
     if(X>=0&&X<200)begin    //X控制图像的横向显示边界:左边距屏幕左边144像素  右边界距屏幕左边界416像素
         vga_rgb<=30'hffffffffff;   //白色
     end
     else if(X>=200&&X<400)begin
         vga_rgb<=30'hf00ff65f1f;   
     end
     else if(X>=400&&X<600)begin
         vga_rgb<=30'h9563486251; 
     end
     else begin
         vga_rgb<=30'h5864928654; 
     end
 end
 assign VGA_R=vga_rgb[23:16];
 assign VGA_G=vga_rgb[15:8];
 assign VGA_B=vga_rgb[7:0];
endmodule

字符显示:

module vga(
OSC_50,     //原CLK2_50时钟信号
VGA_CLK,    //VGA自时钟
VGA_HS,     //行同步信号
VGA_VS,     //场同步信号
VGA_BLANK,  //复合空白信号控制信号  当BLANK为低电平时模拟视频输出消隐电平,此时从R9~R0,G9~G0,B9~B0输入的所有数据被忽略
VGA_SYNC,   //符合同步控制信号      行时序和场时序都要产生同步脉冲
VGA_R,      //VGA绿色
VGA_B,      //VGA蓝色
VGA_G);     //VGA绿色
 input OSC_50;     //外部时钟信号CLK2_50
 output VGA_CLK,VGA_HS,VGA_VS,VGA_BLANK,VGA_SYNC;
 output [7:0] VGA_R,VGA_B,VGA_G;
 parameter H_FRONT = 16;     //行同步前沿信号周期长
 parameter H_SYNC = 96;      //行同步信号周期长
 parameter H_BACK = 48;      //行同步后沿信号周期长
 parameter H_ACT = 640;      //行显示周期长
 parameter H_BLANK = H_FRONT+H_SYNC+H_BACK;        //行空白信号总周期长
 parameter H_TOTAL = H_FRONT+H_SYNC+H_BACK+H_ACT;  //行总周期长耗时
 parameter V_FRONT = 11;     //场同步前沿信号周期长
 parameter V_SYNC = 2;       //场同步信号周期长
 parameter V_BACK = 31;      //场同步后沿信号周期长
 parameter V_ACT = 480;      //场显示周期长
 parameter V_BLANK = V_FRONT+V_SYNC+V_BACK;        //场空白信号总周期长
 parameter V_TOTAL = V_FRONT+V_SYNC+V_BACK+V_ACT;  //场总周期长耗时
 reg [10:0] H_Cont;        //行周期计数器
 reg [10:0] V_Cont;        //场周期计数器
 wire [7:0] VGA_R;         //VGA红色控制线
 wire [7:0] VGA_G;         //VGA绿色控制线
 wire [7:0] VGA_B;         //VGA蓝色控制线
 reg VGA_HS;
 reg VGA_VS;
 reg [10:0] X;             //当前行第几个像素点
 reg [10:0] Y;             //当前场第几行
 reg CLK_25;
 always@(posedge OSC_50)
    begin 
      CLK_25=~CLK_25;         //时钟
    end 
    assign VGA_SYNC = 1'b0;   //同步信号低电平
    assign VGA_BLANK = ~((H_Cont<H_BLANK)||(V_Cont<V_BLANK));  //当行计数器小于行空白总长或场计数器小于场空白总长时,空白信号低电平
    assign CLK_to_DAC = CLK_25;
    assign VGA_CLK = ~CLK_to_DAC;  //VGA时钟等于CLK_25取反
    
 always@(posedge CLK_to_DAC)
    begin
        if(H_Cont<H_TOTAL)           //如果行计数器小于行总时长
            H_Cont<=H_Cont+1'b1;      //行计数器+1
        else H_Cont<=0;              //否则行计数器清零
        if(H_Cont==H_FRONT-1)        //如果行计数器等于行前沿空白时间-1
            VGA_HS<=1'b0;             //行同步信号置0
        if(H_Cont==H_FRONT+H_SYNC-1) //如果行计数器等于行前沿+行同步-1
            VGA_HS<=1'b1;             //行同步信号置1
        if(H_Cont>=H_BLANK)          //如果行计数器大于等于行空白总时长
            X<=H_Cont-H_BLANK;        //X等于行计数器-行空白总时长   (X为当前行第几个像素点)
        else X<=0;                   //否则X为0
    end
 always@(posedge VGA_HS)
    begin
        if(V_Cont<V_TOTAL)           //如果场计数器小于行总时长
            V_Cont<=V_Cont+1'b1;      //场计数器+1
        else V_Cont<=0;              //否则场计数器清零
        if(V_Cont==V_FRONT-1)       //如果场计数器等于场前沿空白时间-1
            VGA_VS<=1'b0;             //场同步信号置0
        if(V_Cont==V_FRONT+V_SYNC-1) //如果场计数器等于行前沿+场同步-1
            VGA_VS<=1'b1;             //场同步信号置1
        if(V_Cont>=V_BLANK)          //如果场计数器大于等于场空白总时长
            Y<=V_Cont-V_BLANK;        //Y等于场计数器-场空白总时长    (Y为当前场第几行)  
        else Y<=0;                   //否则Y为0
    end
    reg valid_yr;
 always@(posedge CLK_to_DAC)
    if(V_Cont == 10'd32)         //场计数器=32时
        valid_yr<=1'b1;           //行输入激活
    else if(V_Cont==10'd512)     //场计数器=512时
        valid_yr<=1'b0;           //行输入冻结
    wire valid_y=valid_yr;       //连线   
    reg valid_r;            
 always@(posedge CLK_to_DAC)   
    if((H_Cont == 10'd32)&&valid_y)     //行计数器=32时
        valid_r<=1'b1;                   //像素输入激活
    else if((H_Cont==10'd512)&&valid_y) //行计数器=512时 
        valid_r<=1'b0;                   //像素输入冻结
    wire valid = valid_r;               //连线
    wire[10:0] x_dis;     //像素显示控制信号
    wire[10:0] y_dis;     //行显示控制信号
    assign x_dis=X;       //连线X
    assign y_dis=Y;       //连线Y
        parameter

        char_line00=256'h0000000000000000000000000000000000000000000000000000000000000000,
        char_line01=256'h0000000000000000000000000000000000000000000000000000000000000000,
        char_line02=256'h0000000000000000000000000000000000000000000000000000000000C00001,
        char_line03=256'h07F00FE00FF0008007E01FFC07E007F007E00FE007E00FE000001C0000008000,
        char_line04=256'h08183018301807801818300818180818181830181818301800001FE000C00001,
        char_line05=256'h10003818380C0180381C2010381C1000381C3818381C381800001800FFF88000,
        char_line06=256'h3000001810180180300C0020300C3000300C0018300C0018000018C000CC0001,
        char_line07=256'h37F0006000180180300C0040300C37F0300C0060300C0060000018200C188030,
        char_line08=256'h380C01F000600180300C0080300C380C300C01F0300C01F0000018871FF01FFF,
        char_line09=256'h300C001801800180300C0180300C300C300C0018300C00180000FFF81818FFC0,
        char_line0a=256'h300C000C06000180300C0300300C300C300C000C300C000C0000190000C0000D,
        char_line0b=256'h300C380C08040180381803003818300C3818380C3818380C000018001010B000,
        char_line0c=256'h18183018300C01801C1003801C1018181C1030181C1030180000198000CE0019,
        char_line0d=256'h07E00FE03FF80FF807E0030007E007E007E00FE007E00FE00000180061F08800,
        char_line0e=256'h0000000000000000000000000000000000000000000000000000185F3FF10061,
        char_line0f=256'h0000000000000000000000000000000000000000000000000000FFFC80408700;

    reg[7:0] char_bit;
    always@(posedge CLK_to_DAC)
        if(X==10'd164)char_bit<=9'd256;   //当显示到164像素时准备开始输出图像数据
        else if(X>10'd164&&X<10'd420)     //左边距屏幕164像素到420像素时    420=164+256(图像宽度)
            char_bit<=char_bit-1'b1;       //倒着输出图像信息
            
    reg[29:0] vga_rgb;                //定义颜色缓存
    always@(posedge CLK_to_DAC) 
        if(X>10'd164&&X<10'd420)    //X控制图像的横向显示边界:左边距屏幕左边164像素  右边界距屏幕左边界420像素
            begin case(Y)            //Y控制图像的纵向显示边界:从距离屏幕顶部160像素开始显示第一行数据
                10'd200:
                if(char_line00[char_bit])vga_rgb<=30'b1111111111_0000000000_0000000000;  //如果该行有数据 则颜色为红色
                else vga_rgb<=30'b0000000000_0000000000_0000000000;                      //否则为黑色
                10'd201:
                if(char_line01[char_bit])vga_rgb<=30'b1111111111_0000000000_0000000000;
                else vga_rgb<=30'b0000000000_0000000000_0000000000;
                10'd202:
                if(char_line02[char_bit])vga_rgb<=30'b1111111111_0000000000_0000000000;
                else vga_rgb<=30'b0000000000_0000000000_0000000000;
                10'd203:
                if(char_line03[char_bit])vga_rgb<=30'b1111111111_0000000000_0000000000;
                else vga_rgb<=30'b0000000000_0000000000_0000000000;
                10'd204:
                if(char_line04[char_bit])vga_rgb<=30'b1111111111_0000000000_0000000000;
                else vga_rgb<=30'b0000000000_0000000000_0000000000; 
                10'd205:
                if(char_line05[char_bit])vga_rgb<=30'b1111111111_0000000000_0000000000;
                else vga_rgb<=30'b0000000000_0000000000_0000000000;
                10'd206:
                if(char_line06[char_bit])vga_rgb<=30'b1111111111_0000000000_0000000000;
                else vga_rgb<=30'b0000000000_0000000000_0000000000; 
                10'd207:
                if(char_line07[char_bit])vga_rgb<=30'b1111111111_0000000000_0000000000;
                else vga_rgb<=30'b0000000000_0000000000_0000000000;
                10'd208:
                if(char_line08[char_bit])vga_rgb<=30'b1111111111_0000000000_0000000000;
                else vga_rgb<=30'b0000000000_0000000000_0000000000; 
                10'd209:
                if(char_line09[char_bit])vga_rgb<=30'b1111111111_0000000000_0000000000;
                else vga_rgb<=30'b0000000000_0000000000_0000000000;
                10'd210:
                if(char_line0a[char_bit])vga_rgb<=30'b1111111111_0000000000_0000000000;
                else vga_rgb<=30'b0000000000_0000000000_0000000000;
                10'd211:
                if(char_line0b[char_bit])vga_rgb<=30'b1111111111_0000000000_0000000000;
                else vga_rgb<=30'b0000000000_0000000000_0000000000;
                10'd212:
                if(char_line0c[char_bit])vga_rgb<=30'b1111111111_0000000000_0000000000;
                else vga_rgb<=30'b0000000000_0000000000_0000000000;
                10'd213:
                if(char_line0d[char_bit])vga_rgb<=30'b1111111111_0000000000_0000000000;
                else vga_rgb<=30'b0000000000_0000000000_0000000000;
                10'd214:
                if(char_line0e[char_bit])vga_rgb<=30'b1111111111_0000000000_0000000000;
                else vga_rgb<=30'b0000000000_0000000000_0000000000;
                10'd215:
                if(char_line0f[char_bit])vga_rgb<=30'b1111111111_0000000000_0000000000;
                else vga_rgb<=30'b0000000000_0000000000_0000000000;
                default:vga_rgb<=30'h0000000000;   //默认颜色黑色
            endcase 
        end
    else vga_rgb<=30'h000000000;             //否则黑色
    assign VGA_R=vga_rgb[23:16];
    assign VGA_G=vga_rgb[15:8];
    assign VGA_B=vga_rgb[7:0];
endmodule



2.实验效果

条纹显示:
在这里插入图片描述
字符显示:
在这里插入图片描述
四.参考文献
https://blog.csdn.net/lxr0106/article/details/139058075

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1843356.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

STM32HAL库--定时器篇

STM32F429 有14个定时器&#xff0c;其中包括 2 个基本定时器&#xff08;TIM6 和 TIM7&#xff09;、 10 个通用定时器&#xff08;TIM2~TIM5&#xff0c;TIM9~TIM14&#xff09;、 2 个高级控制定时器&#xff08;TIM1 和 TIM8&#xff09;。 由上表知道&#xff1a;除了 TIM…

初探工厂抽象模式

设计模式的-工厂模式 1.定义一个约定的规则抽象类 class ETFactory {createStore() {throw new Error(抽象方法&#xff0c;不允许直接调用&#xff0c;需重写)}createUser(){throw new Error(抽象方法&#xff0c;不允许直接调用&#xff0c;需重写)} } 案例&#xff1a;…

【Codesys】-计算开机通电运行时间,累计正常使用时间,故障停机时间

应客户要求&#xff0c;在程序添加了这个用来计算开机运行时间&#xff0c;原理就是取当前时间减去一开始记录的时间&#xff0c;没什么特别要求&#xff0c;记录一下使用的变量类型和数据写法&#xff0c;防止忘记了。 下文只写了一个开机通电运行时间的写法&#xff0c;累计…

Java数据结构与算法——稀疏数组和队列

一、稀疏数组sparsearray数组 该二维数组的很多值是默认值0,因此记录了很多没有意义的数据&#xff0c;可以采用稀疏数组进行压缩 1.基本介绍: 当一个数组中大部分元素为0&#xff0c;或者为同一个值的数组时&#xff0c;可以使用稀疏数组来保存该数组。 稀疏数组的处理方法…

TikTok账号运营:静态住宅IP为什么可以防封?

静态住宅IP代理服务是一种提供稳定、静态IP地址并可隐藏用户真实IP地址的网络代理服务。此类代理服务通常使用高速光纤网络来提供稳定、高速的互联网体验。与动态IP代理相比&#xff0c;静态住宅IP代理的IP地址更稳定&#xff0c;被封的可能性更小&#xff0c;因此更受用户欢迎…

算法基础精选题单 模拟 (个人题解)

前言&#xff1a; 从今天开始刷牛客上的这份题单&#xff0c;为暑假的牛客多校集训做准备&#xff0c;题单上一共有237道题&#xff0c;要想在集训开始前刷完难度还是很大的&#xff0c;但我一定会坚持下来&#xff0c;希望在这段时间内我能真正入门算法竞赛。接下来这三道题都…

k8s学习--OpenKruise详细解释以及原地升级及全链路灰度发布方案

文章目录 OpenKruise简介OpenKruise来源OpenKruise是什么&#xff1f;核心组件有什么&#xff1f;有什么特性和优势&#xff1f;适用于什么场景&#xff1f; 什么是OpenKruise的原地升级原地升级的关键特性使用原地升级的组件原地升级的工作原理 应用环境一、OpenKruise部署1.安…

备忘录模式(大话设计模式)C/C++版本

备忘录模式 C #include <iostream> #include <string> using namespace std;// Memento类&#xff0c;备忘录&#xff0c;此处为角色状态存储箱 class RoleStateMemento { private:int m_vit; // 生命力int m_atk; // 攻击力int m_def; // 防御力 public:RoleStat…

基于SpringBoot+Vue流浪狗领养管理设计和实现(源码+LW+调试文档+讲解等)

&#x1f497;博主介绍&#xff1a;✌全网粉丝1W,CSDN作者、博客专家、全栈领域优质创作者&#xff0c;博客之星、平台优质作者、专注于Java、小程序技术领域和毕业项目实战✌&#x1f497; &#x1f31f;文末获取源码数据库&#x1f31f; 感兴趣的可以先收藏起来&#xff0c;还…

眼见不一定为实之MySQL中的不可见字符

目录 前言 一、问题的由来 1、需求背景 2、数据表结构 二、定位问题 1、初步的问题 2、编码是否有问题 3、依然回到字符本身 三、深入字符本身 1、回归本质 2、数据库解决之道 3、代码层解决 四、总结 前言 在开始今天的博客内容之前&#xff0c;正在看博客的您先来…

如何更换OpenHarmony SDK API 10

OpenHarmony社区已经发布OpenHarmony SDK API 10 beta版本&#xff0c;有些 Sample案例 也有需要API10。那么如何替换使用新的OpenHarmony SDK API 10呢&#xff1f;本文做个记录。 1、如何获取OpenHarmony SDK 1.1 每日构建流水线 可以从OpenHarmony每日构建站点获取最新的…

【ARMv8/v9 GIC 系列 2 -- GIC SPI 中断的 enable和 disable 配置】

文章目录 GIC 中断 Enable 和 DisableGICD_ISENABLER<n>GICD_ICENABLER<n>参数 n使用举例代码实现注意事项 GIC 中断 Enable 和 Disable 在ARMv8架构中&#xff0c;通用中断控制器&#xff08;GIC&#xff09;负责管理处理器的中断。为了控制和管理这些中断&#…

SPI协议——对外部SPI Flash操作

目录 1. W25Q32JVSSIQ背景知识 1.1 64个可擦除块 1.2 1024个扇区&#xff08;每个块有16个扇区&#xff09; 1.3 页 1. W25Q32JVSSIQ背景知识 W25Q32JV阵列被组织成16,384个可编程页&#xff0c;每页有256字节。一次最多可以编程256个字节。页面可分为16组(4KB扇区清除&…

排序方法——《归并排序》

P. S.&#xff1a;以下代码均在VS2019环境下测试&#xff0c;不代表所有编译器均可通过。 P. S.&#xff1a;测试代码均未展示头文件stdio.h的声明&#xff0c;使用时请自行添加。 博主主页&#xff1a;Yan. yan.                        …

chatgpt: linux 下用纯c 编写ui

在Linux下用纯C语言编写用户界面&#xff08;UI&#xff09;&#xff0c;通常会使用GTK或Xlib。GTK是一个更高级的库&#xff0c;提供了丰富的控件和功能&#xff0c;而Xlib则是一个更底层的库&#xff0c;提供了直接操作X Window系统的功能。 下面是一个使用GTK在Linux上创建…

第二十四节:带你梳理Vue2 : Vue具名插槽/作用域插槽/v-slot指令

1. 具名插槽 1.1 没有使用具名插槽的问题 有的时候我们在使用子组件时,在子组件模板上不同的位置插入不同的内容, 只有一个插槽显然没法满足我们的需求,看示例: 需求如下: 子组件是一篇文章的结构父组件在调用子组件是给文章插入标题,正文,时间信息 示例代码如下: <di…

随机森林算法详解

随机森林算法详解 随机森林&#xff08;Random Forest&#xff09;是一种集成学习方法&#xff0c;通过构建多个决策树并将它们的预测结果结合起来&#xff0c;来提高模型的准确性和稳定性。随机森林在分类和回归任务中都表现出色&#xff0c;广泛应用于各类机器学习问题。本文…

MySQL功能测试-之应用工程

MySQL功能测试-之应用工程 前言pom.xmlapplication.yml 文件common.vo 包ResultVO config 包properties 包DruidConfigPropertyDruidMonitorProperty AutoFillMetaObjectHandlerDruidConfigFluxConfigurationMyBatisPlusConfig controller 包ClientControllerDruidControllerWe…

Python开发日记--手撸加解密小工具(2)

目录 1. UI设计和代码生成 2.运行代码查看效果 3.小结 1. UI设计和代码生成 昨天讨论到每一类算法设计为一个Tab&#xff0c;利用的是TabWidget&#xff0c;那么接下来就要在每个Tab里设计算法必要的参数了&#xff0c;这里我们会用到组件有Label、PushButton、TextEdit、Ra…

RSA 加密算法的基础数论、基本原理与 Python 实现

Title: RSA 加密算法的基础数论、基本原理与 Python 实现 文章目录 前言I. 数学原理1. 整数环2. 单位元3. 欧拉定理 II. 算法原理1. 扩展欧几里得算法2. RSA 非对称加密算法 III. 算法实现1. 源代码2. 测试结果 总结参考文献 前言 1977 年美国 MIT 的三位数学家 Ronald L. Riv…