ReF:斯坦福提出的新型语言模型微调方法

news2024/10/22 19:53:42

随着预训练语言模型(LMs)在各种自然语言处理(NLP)任务中的广泛应用,模型微调成为了一个重要的研究方向。传统的全参数微调方法虽然有效,但计算成本高昂,尤其是在大型模型上。为了解决这一问题,来自斯坦福大学和 Pr(Ai)⊃2;R Group 的研究团队推出一种全新的微调方法——表征微调(ReFT)。ReFT方法的核心优势在于,它不直接对模型权重进行更新,而是通过学习对隐藏层表征的特定干预来适应下游任务。这种方法不仅能够保持模型参数的高效性,还能够更深入地挖掘和利用模型内部的语义结构,从而实现更精准、更有效的模型行为调整。通过直接编辑模型的内部表征,ReFT方法为我们提供了一种更为灵活和强大的工具,以更低的成本实现对模型行为的精细调控。本文意在介绍ReFT方法的工作原理、实现方式以及在多个NLP任务上的应用效果。

不同参数数量的LoReFT方法和其他参数高效微调(PEFT)方法在四个基准测试中的性能对比

方法

在深度学习模型的黑箱特性逐渐被揭开的过程中,模型解释性研究提供了对内部工作机制的洞察。特别是在自然语言处理领域,模型的表征能力——即如何将输入文本转换为高维空间中的向量表示——是理解其语义处理能力的关键。基于此,ReFT(Representation Finetuning)方法应运而生,它通过直接干预这些表征来优化模型行为,为模型微调提供了一种新颖且高效的途径。

ReFT(表征微调)方法

Figure 2展示了如何在模型的隐藏层表示中应用干预函数,介绍了LoReFT(低秩线性子空间ReFT)的干预机制。

图2(左面板):ReFT干预的一般过程

在左面板中,展示了一个名为I的干预过程,其中干预函数Φ被应用于层l中位置集P的隐藏表示。这个过程是ReFT方法的核心,它允许研究者在模型的特定层和特定位置对隐藏表示进行精确的调整。这种干预可以是增加、减少或改变表示的某些方面,以此来影响模型的最终预测。

图2(右面板):LoReFT特定的干预函数

右面板更详细地描述了LoReFT中使用的干预函数。LoReFT通过找到一个仅在由矩阵R的行张成的线性子空间内修改表示的编辑向量。具体来说,这里展示了一个秩为2的LoReFT如何在3维隐藏表示上操作。

  • 线性子空间:在LoReFT中,干预不是在整个表示空间中进行,而是限制在一个较低维的线性子空间内。这个子空间由一个低秩矩阵R定义,其中R的行是正交的,并且共同构成了干预发生的空间。

  • 编辑向量:LoReFT学习一个编辑向量,该向量仅在这个子空间内对隐藏表示进行修改。这种方法不仅减少了参数的数量,而且因为干预被限制在较小的子空间内,所以可以更精确地控制模型的行为。

  • 秩-2 LoReFT:图2中特别展示了秩为2的LoReFT操作。在这种情况下,子空间由两个正交向量定义,LoReFT通过在这个2维空间内调整表示来影响模型的预测。

我们可以看到ReFT方法提供了一种非常灵活的方式来调整和优化语言模型的行为,而LoReFT则展示了如何在保持参数效率的同时实现这种调整。这种干预机制为提高模型在特定任务上的性能提供了一种有效手段,同时也为理解模型内部工作方式提供了新的视角。

ReFT方法的动机根植于模型解释性研究中的因果抽象框架。通过干预模型的内部表征,研究者能够测试和验证模型中特定概念的编码方式。例如,通过交换干预(interchange intervention)技术,可以固定某个表征为模型处理某个反事实输入时的值,进而观察这种干预对模型行为的影响。这种干预不仅帮助我们理解模型内部的因果机制,也启发了通过直接编辑表征来控制模型输出的可能性。

ReFT方法的一个关键创新是利用低秩矩阵来实现对表征的高效干预。这种方法的两个实例化——LoReFT(Low-rank Linear Subspace ReFT)和DiReFT(一种LoReFT的简化版本)——展示了如何通过干预隐藏层表征的低维线性子空间来调整模型行为。

  • LoReFT:这种方法通过学习一个低秩投影矩阵来干预隐藏表征,使其在保持参数效率的同时,能够对模型的预测行为产生显著影响。LoReFT的干预函数利用了分布式对齐搜索(DAS)技术来找到最能提升预期输出概率的子空间。

  • DiReFT:作为LoReFT的一个变体,DiReFT在牺牲一些性能的同时,通过去除正交性约束和差异操作来提高训练效率。这种简化使得DiReFT在计算上更加高效,同时仍然保持了较低的参数开销。

ReFT方法不仅限于上述两种低秩实例化,它实际上定义了一类更广泛的表征干预方法。这些方法通过修改Transformer模型中的隐藏表征来实现对模型行为的控制,而无需改变模型的原始权重。

  • 一般概念:ReFT方法通过定义一个干预函数,该函数在模型的前向传播过程中修改特定的隐藏表征。干预可以针对模型的任何层和任何输入位置,提供了极大的灵活性。

  • 应用多样性:ReFT方法的一般性使其能够应用于各种不同的NLP任务,包括但不限于文本生成、分类和问答系统。通过精心设计的干预策略,ReFT能够针对特定任务优化模型的表征能力,从而提高性能。

ReFT方法的提出,不仅为语言模型的微调提供了一种新的视角,也为模型的可解释性和可控性研究开辟了新的道路。随着进一步的研究和开发,ReFT有望成为提高语言模型性能和应用范围的关键技术。

实验

在实验之前,研究者们首先需要确定ReFT方法的超参数配置。这包括决定干预的层数、干预在序列中的位置、干预的维度(即低秩矩阵的秩),以及其他神经网络训练的超参数,如学习率、批次大小和优化器等。他们采用了一个简化的超参数搜索空间,并通过在开发集上的性能来选择最佳的超参数组合。这一过程确保了ReFT方法能够在不同的任务和数据集上实现良好的泛化能力。

常识推理是评估语言模型理解和应用日常知识的能力。研究者们在包括BoolQ、PIQA、SIQA、HellaSwag、WinoGrande、ARC和OBQA在内的多个常识推理数据集上测试了ReFT方法。实验结果表明,LoReFT和DiReFT在这些任务上均展现出了卓越的性能,特别是在参数数量远少于其他PEFT方法的情况下,仍然能够达到或超越当前最佳性能。

不同大小的LLaMA模型(7B和13B表示参数量,B代表十亿)和Llama-2 7B、Llama-3 8B模型在现有PEFT方法上的准确率比较。包括不同任务(如常识推理、算术推理等)上的准确率,并与LoReFT方法进行对比

算术推理任务要求模型解决数学问题并生成解题步骤。研究者们在AQuA、GSM8K、MAWPS和SVAMP等数据集上进行了实验。尽管ReFT方法在这类任务上的表现不如某些PEFT方法,但它们在模型规模较大时仍然能够提供竞争力的性能,显示出ReFT方法在处理复杂推理任务上的潜力。

四个算术推理数据集上,LLaMA-1 7B和13B模型使用不同PEFT方法的准确率对比。用来评估LoReFT方法在算术推理任务上的有效性

指令遵循任务测试模型根据给定指令生成响应的能力。研究者们使用了Ultrafeedback数据集,并与全参数微调、LoRA和RED等方法进行了比较。LoReFT在参数数量相同的情况下,不仅在性能上超越了其他方法,而且在减少参数数量或使用较少训练数据时仍然保持了较高的性能。

使用Alpaca-Eval v1.0对Llama-2 7B模型进行指令调整(instruction-tuning)后的评估结果

自然语言理解是NLP中的核心任务之一,涉及多个子领域,如情感分析、自然语言推理等。研究者们在GLUE基准测试中评估了ReFT方法,该基准测试包括了多个不同的自然语言理解任务。实验结果显示,LoReFT在这些任务上与现有的PEFT方法相比具有竞争力,证明了ReFT方法在小规模语言模型上的有效性。

在GLUE基准测试中,RoBERTa基础版和大版模型使用不同PEFT方法的准确率对比

通过一系列实验证明了ReFT方法不仅在常识推理、算术推理、指令遵循和自然语言理解等任务上取得了优异的性能,而且相比于传统的参数高效微调方法,ReFT展现出了更高的参数效率和更好的泛化能力。

尽管ReFT方法取得了令人鼓舞的成果,但也存在一些问题,如,ReFT方法的超参数选择对最终性能有显著影响,而找到最优的超参数组合可能需要大量的实验和调整。尽管ReFT在多个任务上表现良好,但其在某些特定类型的任务上可能不如其他专门设计的PEFT方法。ReFT方法的干预机制虽然提供了对模型行为的控制,但这种控制的精确性和可解释性仍需进一步研究和改进。

未来的工作将集中在以下几个方面:一是自动化超参数调优过程,以减少手动调整的工作量并提高效率;二是探索ReFT在更多类型的任务和不同规模的模型上的应用,以验证其泛化能力;三是深入研究ReFT干预的可解释性,以及如何更好地理解和利用这些干预来改进模型的决策过程。

论文链接:https://arxiv.org/abs/2404.03592

GitHub 地址:https://github.com/stanfordnlp/pyreft

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1843263.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

CSS样式、选择器、盒子模型

标题 文章目录 一、CSS样式内联样式内部样式外部样式 二、选择器三、颜色四、盒子模型(内边距padding、边框border、外边框margin) 一、CSS样式 可分为:内联样式、内部样式、外部样式 优先级: 内联样式 >内部样式 >外部样式…

2024-6-20 Windows AndroidStudio SDK(首次加载)基础配置,SDK选项无法勾选,以及下载失败的一些解决方法

2024-6-20 Windows AndroidStudio SDK(首次加载)基础配置,SDK选项无法勾选,以及下载失败的一些解决方法 注意:仅仅是SDK这种刚安装时的配置的下载,不要和开源库的镜像源扯到一起!!!! 最近想玩AndroidStudio的JNI开发, 想着安装后…

机器人阻抗控制相关文献学习(阻抗实现)

机器人阻抗是一个描述机器人与环境交互时动态特性的概念。 定义: 阻抗在机器人领域中,通常用来描述机器人与其环境之间的相互作用。当机器人与环境接触时,环境对机器人施加一个作用力,而机器人也会对环境施加一个反作用力。这个反…

【机器学习】从理论到实践:决策树算法在机器学习中的应用与实现

📝个人主页:哈__ 期待您的关注 目录 📕引言 ⛓决策树的基本原理 1. 决策树的结构 2. 信息增益 熵的计算公式 信息增益的计算公式 3. 基尼指数 4. 决策树的构建 🤖决策树的代码实现 1. 数据准备 2. 决策树模型训练 3.…

Studying-代码随想录训练营day15| 222.完全二叉树的节点个数、110.平衡二叉树、257.二叉树的所有路径、404.左叶子之和

第十五天,二叉树part03💪,编程语言:C 目录 257.完全二叉树的节点个数 110.平衡二叉树 257.二叉树的所有路径 404.左叶子之和 总结 257.完全二叉树的节点个数 文档讲解:代码随想录完全二叉树的节点个数 视频讲解…

Mistral AI 发布 Codestral-22B,精通 80+ 编程语言,22B 参数超越 70B Code Llama

前言 大型语言模型 (LLM) 在代码生成领域展现出巨大的潜力,但现有的模型在支持的编程语言数量、生成速度和代码质量方面仍存在局限性。法国 AI 独角兽 Mistral AI 近期发布了其首款代码生成模型 Codestral-22B,宣称在多项指标上超越了 GPT-4 和 Llama3&…

计算机网络:应用层 - 万维网 HTTP协议

计算机网络:应用层 - 万维网 & HTTP协议 万维网 WWW统一资源定位符 URL 超文本传输协议 HTTP非持续连接持续连接非流水线流水线 代理服务器HTTP报文 万维网 WWW 万维网是一个大规模的、联机式的信息储藏所。万维网用链接的方法能非常方便地从互联网上的一个站点…

企业的差旅费用还能更节省吗?

对于多数企业而言,差旅成本是仅次于人力资源成本的第二大可控成本。 差旅成本除了差旅产品采购费用、差旅服务费用这些显性成本外,还有预订时间消耗、审批环节、报销流程、票据核查等隐性成本。 据调研数据显示:企业对于专业差旅管理的认知度…

测试服务器端口是否打开,服务器端口开放异常的解决方法

在进行服务器端口开放性的测试时,我们通常使用网络工具来验证目标端口是否响应特定的协议请求。常用的工具包括Telnet、Nmap、nc(netcat)等。这些工具可以通过发送TCP或UDP数据包到指定的IP地址和端口,然后分析返回的数据包&#…

「Python-docx 专栏」docx 获取页面大小、设置页面大小(纸张大小)

本文目录 前言一、docx纸张大小介绍1、document.xml① 关于 document.xml 的一些知识点② 纸张大小在哪里③ 纸张大小都有啥④ EMU对应的尺寸列表二、获取docx纸张大小1、完整代码2、运行效果图三、python为docx设置纸张大小1、完整代码2、效果图前言 今天的这边文章,我们来说…

DNS部署与安全

一、DNS 英文全称:Domain Name Service 含义:域名服务 作用:为客户机提供域名解析服务 二、域名组成 域名组成概述 (1)如"www.sina.com.cn”是一个域名,从严格意义上讲,“sina.com.cn”…

总结 CSS 选择器的常见用法

一,什么是css 在前端网页中,css就相当于化妆术,把一个很生硬的网页页面变得排版有序起来。 CSS可以对网页中的元素位置进行像素级精准控制,实现美化页面的效果,也能做到页面的样式和结构分离。 二,css的基…

前端下载文件流,axios设置responseType: arraybuffer/blob无效

项目中调用后端下载文件接口,设置responseType: arraybuffer,实际拿到的数据data是字符串 axios({method: post,url: /api/v1/records/recording-file/play,// 如果有需要发送的数据,可以放在这里data: { uuid: 06e7075d-4ce0-476f-88cb-87fb0a1b4844 }…

COSMOSPANDA星际熊猫闪耀助阵2023中国(广州)国际时尚产业大会

在2023年12月27日至12月29日于广州海心沙盛大举行的2023中国(广州)国际时尚产业大会上,备受瞩目的星际熊猫以其独特的IP精神与理念,成为本次活动的焦点。 打造“时尚之都”是提升广州国际知名度、消费繁荣度、商业活跃度的重要抓…

Python 基础:异常

目录 一、异常概念二、处理异常2.1 抛出异常2.2 使用 try-except 代码块2.3 使用 try-except-else 代码块2.4 静默失败 三、总结 遇到看不明白的地方,欢迎在评论中留言呐,一起讨论,一起进步! 本文参考:《Python编程&a…

《A DECODER-ONLY FOUNDATION MODEL FOR TIME-SERIES FORECASTING》阅读总结

介绍了一个名为TimeFM的新型时间序列预测基础模型,该模型受启发于自然语言处理领域的大语言模型,通过再大规模真实世界和合成时间序列数据集上的预训练,能够在多种不同的公共数据集上实现接近最先进监督模型的零样本预测性能。 该模型使用真…

数据资产与用户体验优化:深入挖掘用户数据,精准分析用户需求与行为,优化产品与服务,提升用户体验与满意度,打造卓越的用户体验,赢得市场认可

一、引言 在数字化时代,数据已经成为企业最宝贵的资产之一。通过深入挖掘和分析用户数据,企业能够精准把握用户需求和行为,从而优化产品与服务,提升用户体验和满意度。这不仅有助于企业在激烈的市场竞争中脱颖而出,还…

人工智能系列:一文让你读懂什么是模式识别

目录 1.什么是模式识别 1.1人工智能和模式识别 1.2信息感知 1.3计算机模式识别 1.4模式识别应用 1.5模式识别发展简史 1.6相关问题和领域 2.模式识别形式化 2.1模式和模式识别 2.2模式表示 2.3特征空间 2.4特征空间中的分类 2.5一个例子 3.模式识别系统流程 4.模…

【维护服务器安全,如何应对恶意的威胁行为?】

随着互联网的迅猛发展,网络服务器成为现代社会中不可或缺的基础设施。然而,恶意攻击行为也日益猖獗,技术不断升级,给网络服务器的安全带来了严峻挑战。下面德迅云安全就分享一些常见的危害服务器安全的行为,和相应的应…

某棋牌渗透测试

前言 由于传播、利用此文所提供的信息而造成的任何直接或者间接的后果及损失,均由使用者本人负责,文章作者不为此承担任何责任。 一、信息收集 这里通过fofa进行收集,语法为:body某棋牌 && titlexxx 图1-1 fofa资产收集 …