到现在我们了解并认识了线性表的概念,动态、静态顺序表的建立,以及两种链表的实现,接下来我们要认识一个新的内容,新的概念,栈,是基于顺序表或者链表的一种新型数据结构。
目录
一、栈是什么?
二、栈的实现
1.实现的方式
2.实现栈的函数
1.初始化栈
2.入栈
3.出栈
4.查看栈顶元素
5.打印栈和清空栈
三、完整代码实现
1.链表实现栈
2.数组(顺序表)实现栈
总结
一、栈是什么?
栈:是一种特殊的线性表。其只允许在固定的一端进行插入和删除操作。进行数据的插入和删除的一端称为栈顶,另外的一端称为栈底。栈中的数据元素遵循先进后出(后进先出)的原则
之前在学习C语言的时候,就i听说过的两种概念
1.压栈:栈的插入操作叫做进栈、压栈、入栈等,插入数据在栈顶
2.出栈:栈的删除操作叫做出栈。出数据也在栈顶
二、栈的实现
1.实现的方式
有两种
1.我们可以通过顺序表的形式实现,因为进行尾插尾删除,代价小,就算是更改或者删除栈中指定的元素,不过也是移动位置而已。
如图所示:
结构体代码如下:
#define MAX 100
#define CAp 4 ///初始化的时候capacity的容量
#define Make 2//每一次增加的newCapacity的容量
//静态
typedef struct Stacknode {
int data[MAX];//数据域
int size;//表示元素个数
}Stack;
//动态
typedef struct Stacknode2 {
int* data;//数据域
int size;//表示元素个数
int capacity;//表示当前容量
}Stack1;
2.通过链表的形式进行实现栈表
结构体如下:
//创建基础结构
typedef struct node {
int data;
struct node* next;
}ST;
//栈实际上就是一个只能进行头插头删的单向链表
//创建栈的头尾结点 结构体
typedef struct stack {
struct node* top;//栈顶元素地址
struct node* bottom;//栈底元素地址
int size;//栈的元素个数
};
2.实现栈的函数
以链表实现栈为例,在本文结尾处,一并放置用数组实现栈的完整代码
1.初始化栈
结构体如上,使用的是上文的结构体类型
代码如下:
//初始化栈
struct stack* create_stack()
{
struct stack* s = (struct stack*)malloc(sizeof(struct stack));
s->size = 0;
s->bottom = s->top = NULL;
return s;
}
使用malloc函数,申请空间,将s的size大小置为0,bottom和top表示栈底栈顶都指向NULL
2.入栈
如图所示:
代码如下:
//创建新的结点
struct node* create_node(int data) {
struct node* newnode = (struct node*)malloc(sizeof(struct node));
newnode->next = NULL;
newnode->data = data;
return newnode;
}
//入栈
//入栈首先要将准备入栈的元素封装成结点,和链表没有差别
void stackPush(struct stack* s, int x) {
ST* newnode = create_node(x);
newnode->next = s->top;
s->top = newnode;
s->size++;
}
3.出栈
如图所示:
代码如下:
//出栈
void stackPop(struct stack* s, int* x) {
//判断是否为空栈 如果是 空栈的话就 使得输出 Pop failed
if (s->size == 0) {
printf("Pop failed\n");
exit(-1);
}
//创建结点临时变量 赋值得到栈顶元素
ST* tmp = s->top;
*x = tmp->data;//得到数值
s->top = tmp->next;
s->size--;
}
4.查看栈顶元素
代码如下:
//查看栈顶元素
void stackTop(struct stack* s, int* x) {
if (s->size == 0) {
printf("空栈~~\n");
exit(-1);
}
*x = s->top->next->data;
}
5.打印栈和清空栈
代码如下:
//清空栈
void make_stack_empty(struct stack* s) {
s->size = 0;
s->bottom = s->top ;
//将栈底等于栈顶就可以 然后将size为0
}
void stackPrint(struct stack* s) {
//打印栈表
ST* list = s->top;
printf("top -> ");
while (list!=NULL) {
printf("%d -> ", list->data);
list = list->next;
}
}
三、完整代码实现
1.链表实现栈
#define _CRT_SECURE_NO_WARNINGS
#include<stdio.h>
#include<stdlib.h>
#include<assert.h>
#include<malloc.h>
//创建基础结构
typedef struct node {
int data;
struct node* next;
}ST;
//栈实际上就是一个只能进行头插头删的单向链表
//创建栈的头尾结点 结构体
typedef struct stack {
struct node* top;//栈顶元素地址
struct node* bottom;//栈底元素地址
int size;//栈的元素个数
};
//表示每一个栈都是struct stack* 类型的,栈中的每一个怨怒是都是struct node *类型的 不仅需要为栈分配内存,还需要为压入栈中的元素分配内存
/*
node中的next指针用于让栈中上面的节点连接到下面的节点,stack中的top和bottom分别存放当前栈顶元素的地址和栈底元素的后一个位置的地址(NULL),
因为是用于指向栈中节点的指针,所以得是struct node* 类型。*/
//初始化栈
struct stack* create_stack()
{
struct stack* s = (struct stack*)malloc(sizeof(struct stack));
s->size = 0;
s->bottom = s->top = NULL;
return s;
}
//一开始栈是空的所以 size为0 top bottom是NULL
//创建新的结点
struct node* create_node(int data) {
struct node* newnode = (struct node*)malloc(sizeof(struct node));
newnode->next = NULL;
newnode->data = data;
return newnode;
}
//入栈
//入栈首先要将准备入栈的元素封装成结点,和链表没有差别
void stackPush(struct stack* s, int x) {
ST* newnode = create_node(x);
newnode->next = s->top;
s->top = newnode;
s->size++;
}
//出栈
void stackPop(struct stack* s, int* x) {
//判断是否为空栈 如果是 空栈的话就 使得输出 Pop failed
if (s->size == 0) {
printf("Pop failed\n");
exit(-1);
}
//创建结点临时变量 赋值得到栈顶元素
ST* tmp = s->top;
*x = tmp->data;//得到数值
s->top = tmp->next;
s->size--;
}
//查看栈顶元素
void stackTop(struct stack* s, int* x) {
if (s->size == 0) {
printf("空栈~~\n");
exit(-1);
}
*x = s->top->next->data;
}
//清空栈
void make_stack_empty(struct stack* s) {
s->size = 0;
s->bottom = s->top ;
//将栈底等于栈顶就可以 然后将size为0
}
void stackPrint(struct stack* s) {
//打印栈表
ST* list = s->top;
printf("top -> ");
while (list!=NULL) {
printf("%d -> ", list->data);
list = list->next;
}
}
int main()
{
struct stack *s = create_stack();
stackPush(s, 1);
stackPush(s, 2);
stackPush(s, 3);
stackPush(s, 4);
stackPush(s, 5);
stackPrint(s);
int a = 0;
stackPop(s,&a);
printf("\n%d\n", a);
stackPrint(s);
return 0;
}
2.数组(顺序表)实现栈
#define _CRT_SECURE_NO_WARNINGS
#include"steck.h"
#define _CRT_SECURE_NO_WARNINGS
#include<stdio.h>
#include<stdlib.h>
#include<assert.h>
#include<stdbool.h>
//栈是限定在一个表里面的一段进行插入删除操作的线性表
// 数据进出的顺序为先进后处
// 应用场景:网页浏览的时候的后退 编辑软件的撤销
//
//创建栈 两个方式:数组(顺序表)和 单链表
//1.数组:选用数组用来做栈的存储结构,只需要在数组末尾进行操作即可,完美避开数组操作中挪动数据缺陷
// 显然是可以用数组来做栈的存储结构
//2.单链表 :因为栈是吸纳星表的一段进行操作,所以一般是用链表头进行操作
//进行头插头删 是用链表更好 效率更高
//1.用数组的方式
typedef int StackDataType;
typedef struct Stcak {
StackDataType* data;
int top;
int capacity; //数据域和元素个数
}ST;
//初始化
void StackInit(ST* ps) {
ps->data = (StackDataType*)malloc(sizeof(StackDataType) * 4);
if (ps->data == NULL) {
printf("malloc failed\n");
exit(-1);
}
ps->top = 0;
ps->capacity = 4;
}
//压栈
void StackPush(ST* ps, int x) {
assert(ps);//断言
//满了就扩容
if (ps->top == ps->capacity) {
StackDataType* tmp = (StackDataType*)realloc(ps->data, sizeof(StackDataType) * ps->capacity * 2);
if (tmp == NULL) {
printf("realloc failed\n");
exit(-1);
}
else {
ps->data = tmp;
ps->capacity *= 2;
}
}
ps->data[ps->top] = x;
ps->top++;
}
//出栈
void StackPop(ST* ps) {
//出栈是将最后一个元素放出来 先进后出
assert(ps);
assert(ps->top > 0);//断言进行判断是否栈为空 即top!=0
ps->top--;
//直接减减就可以 没有了对应元素 的数据 如果再次压栈的话 会把之前的数据进行更改
}
//取得栈顶元素
StackDataType StackTop(ST* ps) {
assert(ps);
assert(ps->top > 0);
return ps->data[ps->top - 1];//因为top栈顶始终要保持比元素个数大一,保证压栈的时候先压栈然后再加加
//所以取栈顶元素 的时候 top-1
}
//销毁栈
void StackDestory(ST* ps) {
assert(ps);
free(ps->data);
//释放数组data的空间
ps->data = NULL;
ps->top = ps->capacity = 0;
}
//求栈中元素个数
int StackSize(ST* ps) {
assert(ps);
return ps->top;
}
//判断是否为空
bool StackEmpty(ST* ps) {
assert(ps);
return ps->top == 0;
}
void StackPrint(ST* ps) {
//打印栈表
assert(ps);
for (int i = 0; i < ps->top; i++) {
printf("%d ", ps->data[i]);
}
printf("\n");
}
int main()
{
ST s;
ST *ps=&s;
/* StackInit(&ps);
StackPush(&ps, 1);
StackPush(&ps, 2);
StackPush(&ps, 3);
StackPush(&ps, 4);
StackPush(&ps, 5);
StackPrint(&ps);*/
StackInit(ps);
StackPush(ps, 1);
StackPush(ps, 2);
StackPush(ps, 3);
StackPush(ps, 4);
StackPush(ps, 5);
StackPop(ps);//出栈成功
StackPrint(ps);
printf("%d \n", StackTop(ps));//取得栈顶元素
printf("%d \n", StackSize(ps));//获得栈表元素个数
StackDestory(ps);
StackPrint(ps);//销毁栈表成功
return 0;
}
总结
栈是限定在一个表里面的一段,对其进行插入删除操作的线性表,数据进出的顺序为先进后处,应用场景:网页浏览的时候的后退 编辑软件的撤销,实际上栈的功能就这样,学会顺序表以及链表的使用,对于栈来讲,只是懂得头擦头删,理解概念了,就好掌握并实现栈。
下文,我们会讲解一下队列,和栈相似,但是另有不同,敬请期待吧,感谢大家支持!!!