STM32通过I2C软件读写MPU6050

news2024/11/23 13:42:30

文章目录​​​​​​​

1. MPU6050

1.1 运动学概念

1.2 工作原理

2. 参数

2.1 量程选择

2.2 I2C从机地址配置

3. 硬件电路

4. 框架图

5. 软件和硬件波形对比

6. 软件I2C读写MPU6050

6.1 程序整体构架

6.2 一些需要注意的点:

6.3 MPU6050初始化配置

6.4 传感器模型

7. 代码实现

​​​​​​​7.1  MyI2C.c

​​​​​​​7.2  MyI2C.h

7.3 MPU6050.C

7.4 MPU6050.H

7.5 MPU6050_Reg.h

7.6 main.c


1. MPU6050

对于I2C通信和MPU6050的详细解析可以看下面这篇文章

STM32单片机I2C通信详解-CSDN博客

对于STM32通过I2C硬件读写MPU6050的代码,可以看下面这篇文章

STM32通过I2C硬件读写MPU6050-CSDN博客

MPU6050是一个6轴姿态传感器,可以测量芯片自身X、Y、Z轴的加速度、角速度参数,通过数据融合,可进一步得到姿态角,常应用于平衡车、飞行器等需要检测自身姿态的场景

3轴加速度计(Accelerometer):测量X、Y、Z轴的加速度

3轴陀螺仪传感器(Gyroscope):测量X、Y、Z轴的角速度

1.1 运动学概念

  • 欧拉角
    • 欧拉角是用来描述三维空间中刚体旋转的三个角度:俯仰角(Pitch)、滚转角(Roll)和偏航角(Yaw)。
    • 俯仰角(Pitch):飞机机头上下倾斜的角度。
    • 滚转角(Roll):飞机左右倾斜的角度。
    • 偏航角(Yaw):飞机左右转向的角度。

1.2 工作原理

  1. 加速度计
    • 在X、Y、Z轴方向上测量加速度。通过检测重力加速度,可以推断出设备的倾斜角度。例如,在一个静止状态下,测量到的重力加速度可以用来计算设备相对于水平面的倾斜角度。
  2. 陀螺仪
    • 测量设备在X、Y、Z轴上的角速度。陀螺仪可以用于检测设备的旋转运动,比如快速转动或者缓慢旋转等。
    • 陀螺仪具有动态稳定性,但不具备静态稳定性。

2. 参数

ADC和数据存储

  • 16位ADC:MPU6050集成了16位的ADC,用于将模拟信号转换为数字信号,量化范围为-32768到32767。
  • 量化过程:ADC将模拟信号转换为数字信号,并以两个字节进行存储。

加速度计满量程选择:±2、±4、±8、±16(g)

陀螺仪满量程选择: ±250、±500、±1000、±2000(°/sec)​​​​​​​

可配置的数字低通滤波器

  • 允许用户根据应用需求配置滤波器,滤除噪声和干扰。

可配置的时钟源

  • 支持多种时钟源,包括内部振荡器、外部参考时钟等。

采样率

  • 采样率可以通过配置寄存器设置,决定数据采集的频率。

I2C地址配置

  • I2C从机地址
    • 当AD0引脚接低电平(AD0=0):地址为0x68。
    • 当AD0引脚接高电平(AD0=1):地址为0x69。
    • 具体地址配置决定了在I2C总线上的唯一性,避免地址冲突。

2.1 量程选择

满量程选择

  • 剧烈运动:选择较大的满量程,确保测量范围足够大。
  • 平缓运动:选择较小的满量程,提升测量分辨率。

加速度计满量程示例

  • ±16g
    • 读取的ADC值为最大值32768时,对应实际加速度为16g。
    • ADC值为32768的一半(16384)时,对应加速度为8g。
  • ±2g
    • 读取的ADC值为最大值32768时,对应实际加速度为2g。
    • ADC值为32768的一半(16384)时,对应加速度为1g。

测量分辨率

  • 满量程越小,测量分辨率越高,测量越精细。
  • 满量程越大,测量范围越广。
  • ADC值与加速度值呈线性关系,可以通过乘一个系数从ADC值计算出实际加速度。

2.2 I2C从机地址配置

二进制地址转换为十六进制

  • 以从机地址1101000为例。
  • 把7位二进制数1101000转换为十六进制,即分割低4位和高3位:0110 1000,转换后为0x68

I2C时序中的地址格式

  • 在I2C通信时,需要发送7位从机地址1101000加上1位读写位。
  • 认为0x68是从机地址,需要将0x68左移1位,再加上读写位(0或1)。
  • 转换步骤:
    • 0x68左移1位:1101 0000(即0xD0)。
    • 再与读写位(0或1)进行或操作:(0x68 << 1) | 0(0x68 << 1) | 1

实际应用

  • 写操作时,从机地址为0xD0
  • 读操作时,从机地址为0xD1

3. 硬件电路

引脚功能

VCC、GND

电源3.3v

SCL、SDA

I2C通信引脚

XCL、XDA

主机I2C通信引脚

AD0

从机地址最低位

INT

中断信号输出

4. 框架图

5. 软件和硬件波形对比

软件I2C实现

  1. 波形特点:软件I2C的波形较为不规整,每个时钟周期和空闲时间都不一致。
  2. 操作特点:软件I2C时的引脚操作会有一定的延时,因此各个时钟周期的间隔和占空比都不均匀。

硬件I2C实现

  1. 波形特点:硬件I2C的波形更加规整,时钟周期和占空比非常一致。
  2. 操作特点:每个时钟周期后都有严格的延时,保证每个周期的时间相同。

6. 软件I2C读写MPU6050

6.1 程序整体构架

首先建立I2C通信层的.c和.h模块,再建立MPU6050.c, 最后是main.c

  • Main.c
    • 调用MPU6050初始化函数。
    • 循环读取数据并进行显示。
  • MPU6050.c
    • 基于I2C通信协议,设定设备地址,发送读写指令。
    • 配置寄存器,读取传感器数据。
  • I2C.c
    • 初始化GPIO。
    • 编写基本的I2C操作函数,包括起始条件、终止条件、发送/接收一个字节、发送/接收应答等。

6.2 一些需要注意的点:

起始和终止条件

  • 起始条件:在SCL高电平期间,SDA由高电平变为低电平,产生起始条件(Start Condition)。这表示一次I2C通信的开始。

  • 终止条件:在SCL高电平期间,SDA由低电平变为高电平,产生终止条件(Stop Condition)。这表示一次I2C通信的结束。

数据传输过程

  • 数据位传输:在SCL低电平期间,主机可以改变SDA的电平,即在SCL的每一个低电平周期内,主机将要传输的数据位放在SDA线上。

  • 数据位读取:在SCL高电平期间,从机读取SDA线上的数据。此时,SDA线上的电平表示当前传输的数据位。

应答位的发送和接收

  • 发送应答:在主机发送完一个字节数据后,从机会在下一个SCL高电平期间将SDA线拉低,表示已接收到数据(ACK)。

  • 接收应答:主机在发送完数据后,将SDA线释放为高电平,然后在SCL高电平期间读取SDA的电平,判断是否收到从机的应答。

I2C引脚配置

  • 开漏输出+弱上拉:I2C引脚配置为开漏输出,并启用弱上拉电阻。这意味着,当引脚输出高电平时,实际上是释放引脚,由上拉电阻将其拉高。当引脚输出低电平时,引脚被拉低。

接收Byte程序

  • 循环读取SDA:在接收数据时,主机会不断循环读取SDA引脚的电平。在SCL时钟的驱动下,从机会在SDA线上放置数据。
  • 数据有效性:由于从机会在SCL高电平期间改变SDA的电平,因此主机在读取SDA时,可以获得从机发送的数据。

6.3 MPU6050初始化配置

配置电源管理寄存器1:0000 0001

设备复位:值:0  含义:设备不复位。

睡眠模式:值:0  含义:解除睡眠。

循环模式:值:0  含义:不需要循环。

无关位:值:0

温度传感器失能:值:0   含义:温度传感器不失能。

时钟源选择:值:001   含义:选择X轴的陀螺仪时钟。

配置电源管理寄存器2:0x00

循环唤醒模式:值:00  含义:不需要循环唤醒模式。

待机位:值:每个轴的待机位全部给0。

电源管理寄存器1和2主要用于控制MPU6050的电源状态和工作模式。通过设置这些参数,可以确保MPU6050在最佳状态下运行,并且根据需要调整其功耗表现。

采样率分频:值:0x09   含义:10分频,8位决定了数据输出的快慢,值越小越快。

配置寄存器:寄存器值:0x06

  • 外部同步:全部给0,不需要。

  • 数字低通滤波器:110,最平滑的滤波。

陀螺仪配置寄存器:0x18

  1. 自测使能:值:0  含义:不自测使能。

  2. 满量程选择:值:11  含义:选择最大量程。

  3. 无关位:后三位无关。

加速度计配置寄存器:0x18

  1. 自测使能:值:000  含义:不自测使能。
  2. 满量程选择:值:11  含义:选择最大量程。
  3. 高通滤波器:不使用。

6.4 传感器模型

​​​​​​​这里借用一张图片

  • 陀螺仪旋转检测

    • 陀螺仪绕Z轴旋转,陀螺仪Z轴会输出对应的角速度。
    • 图示中,三维空间的坐标轴X、Y、Z对应陀螺仪的三个方向。
    • 通过陀螺仪的测量,可以获得绕某一轴的旋转角速度信息,帮助理解物体的旋转状态。
  • 加速度计检测

    • 在正方体中放置一个小球,小球压在哪个面上就产生对应轴的输出。
    • 当前芯片水平放置,对应正方体的X轴、Y轴数据基本为0。
    • 小球在底面上,产生1个g的重力加速度,这里显示的数据是1943。
    • 1943代表Z轴方向的支持力,所以Z轴加速度为正。
  • 数据计算

    • 根据测量值1943和满量程32768(16位ADC),计算得出加速度的实际值。
    • 根据测量值1943和满量程32768(16位ADC),计算得出加速度的实际值。
    • 公式: 1943/32768 = Z/16g
    • 所以Z轴的加速度为0.95g。
  • 测量值比例公式
    • 读到的ADC值与满量程值之间的比例关系。
    • 公式: 读到的数据/32768 = X/满量程 (其中,满量程在16位系统中为-32768到32767)

7. 代码实现

软件I2C读写MPU6050

​​​​​​​7.1  MyI2C.c

#include "stm32f10x.h"                  // Device header
#include "Delay.h"

/*引脚配置层*/

/**
  * 函    数:I2C写SCL引脚电平
  * 参    数:BitValue 协议层传入的当前需要写入SCL的电平,范围0~1
  * 返 回 值:无
  * 注意事项:此函数需要用户实现内容,当BitValue为0时,需要置SCL为低电平,当BitValue为1时,需要置SCL为高电平
  */
void MyI2C_W_SCL(uint8_t BitValue)
{
	GPIO_WriteBit(GPIOB, GPIO_Pin_10, (BitAction)BitValue);		//根据BitValue,设置SCL引脚的电平
	Delay_us(10);												//延时10us,防止时序频率超过要求
}

/**
  * 函    数:I2C写SDA引脚电平
  * 参    数:BitValue 协议层传入的当前需要写入SDA的电平,范围0~0xFF
  * 返 回 值:无
  * 注意事项:此函数需要用户实现内容,当BitValue为0时,需要置SDA为低电平,当BitValue非0时,需要置SDA为高电平
  */
void MyI2C_W_SDA(uint8_t BitValue)
{
	GPIO_WriteBit(GPIOB, GPIO_Pin_11, (BitAction)BitValue);		//根据BitValue,设置SDA引脚的电平,BitValue要实现非0即1的特性
	Delay_us(10);												//延时10us,防止时序频率超过要求
}

/**
  * 函    数:I2C读SDA引脚电平
  * 参    数:无
  * 返 回 值:协议层需要得到的当前SDA的电平,范围0~1
  * 注意事项:此函数需要用户实现内容,当前SDA为低电平时,返回0,当前SDA为高电平时,返回1
  */
uint8_t MyI2C_R_SDA(void)
{
	uint8_t BitValue;
	BitValue = GPIO_ReadInputDataBit(GPIOB, GPIO_Pin_11);		//读取SDA电平
	Delay_us(10);												//延时10us,防止时序频率超过要求
	return BitValue;											//返回SDA电平
}

/**
  * 函    数:I2C初始化
  * 参    数:无
  * 返 回 值:无
  * 注意事项:此函数需要用户实现内容,实现SCL和SDA引脚的初始化
  */
void MyI2C_Init(void)
{
	/*开启时钟*/
	RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOB, ENABLE);	//开启GPIOB的时钟
	
	/*GPIO初始化*/
	GPIO_InitTypeDef GPIO_InitStructure;
	GPIO_InitStructure.GPIO_Mode = GPIO_Mode_Out_OD;
	GPIO_InitStructure.GPIO_Pin = GPIO_Pin_10 | GPIO_Pin_11;
	GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;
	GPIO_Init(GPIOB, &GPIO_InitStructure);					//将PB10和PB11引脚初始化为开漏输出
	
	/*设置默认电平*/
	GPIO_SetBits(GPIOB, GPIO_Pin_10 | GPIO_Pin_11);			//设置PB10和PB11引脚初始化后默认为高电平(释放总线状态)
}

/*协议层*/

/**
  * 函    数:I2C起始
  * 参    数:无
  * 返 回 值:无
  */
void MyI2C_Start(void)
{
	MyI2C_W_SDA(1);							//释放SDA,确保SDA为高电平
	MyI2C_W_SCL(1);							//释放SCL,确保SCL为高电平
	MyI2C_W_SDA(0);							//在SCL高电平期间,拉低SDA,产生起始信号
	MyI2C_W_SCL(0);							//起始后把SCL也拉低,即为了占用总线,也为了方便总线时序的拼接
}

/**
  * 函    数:I2C终止
  * 参    数:无
  * 返 回 值:无
  */
void MyI2C_Stop(void)
{
	MyI2C_W_SDA(0);							//拉低SDA,确保SDA为低电平
	MyI2C_W_SCL(1);							//释放SCL,使SCL呈现高电平
	MyI2C_W_SDA(1);							//在SCL高电平期间,释放SDA,产生终止信号
}

/**
  * 函    数:I2C发送一个字节
  * 参    数:Byte 要发送的一个字节数据,范围:0x00~0xFF
  * 返 回 值:无
  */
void MyI2C_SendByte(uint8_t Byte)
{
	uint8_t i;
	for (i = 0; i < 8; i ++)				//循环8次,主机依次发送数据的每一位
	{
		MyI2C_W_SDA(Byte & (0x80 >> i));	//使用掩码的方式取出Byte的指定一位数据并写入到SDA线
		MyI2C_W_SCL(1);						//释放SCL,从机在SCL高电平期间读取SDA
		MyI2C_W_SCL(0);						//拉低SCL,主机开始发送下一位数据
	}
}

/**
  * 函    数:I2C接收一个字节
  * 参    数:无
  * 返 回 值:接收到的一个字节数据,范围:0x00~0xFF
  */
uint8_t MyI2C_ReceiveByte(void)
{
	uint8_t i, Byte = 0x00;					//定义接收的数据,并赋初值0x00,此处必须赋初值0x00,后面会用到
	MyI2C_W_SDA(1);							//接收前,主机先确保释放SDA,避免干扰从机的数据发送
	for (i = 0; i < 8; i ++)				//循环8次,主机依次接收数据的每一位
	{
		MyI2C_W_SCL(1);						//释放SCL,主机机在SCL高电平期间读取SDA
		if (MyI2C_R_SDA() == 1){Byte |= (0x80 >> i);}	//读取SDA数据,并存储到Byte变量
														//当SDA为1时,置变量指定位为1,当SDA为0时,不做处理,指定位为默认的初值0
		MyI2C_W_SCL(0);						//拉低SCL,从机在SCL低电平期间写入SDA
	}
	return Byte;							//返回接收到的一个字节数据
}

/**
  * 函    数:I2C发送应答位
  * 参    数:Byte 要发送的应答位,范围:0~1,0表示应答,1表示非应答
  * 返 回 值:无
  */
void MyI2C_SendAck(uint8_t AckBit)
{
	MyI2C_W_SDA(AckBit);					//主机把应答位数据放到SDA线
	MyI2C_W_SCL(1);							//释放SCL,从机在SCL高电平期间,读取应答位
	MyI2C_W_SCL(0);							//拉低SCL,开始下一个时序模块
}

/**
  * 函    数:I2C接收应答位
  * 参    数:无
  * 返 回 值:接收到的应答位,范围:0~1,0表示应答,1表示非应答
  */
uint8_t MyI2C_ReceiveAck(void)
{
	uint8_t AckBit;							//定义应答位变量
	MyI2C_W_SDA(1);							//接收前,主机先确保释放SDA,避免干扰从机的数据发送
	MyI2C_W_SCL(1);							//释放SCL,主机机在SCL高电平期间读取SDA
	AckBit = MyI2C_R_SDA();					//将应答位存储到变量里
	MyI2C_W_SCL(0);							//拉低SCL,开始下一个时序模块
	return AckBit;							//返回定义应答位变量
}

​​​​​​​7.2  MyI2C.h

#ifndef __MYI2C_H
#define __MYI2C_H

void MyI2C_Init(void);
void MyI2C_Start(void);
void MyI2C_Stop(void);
void MyI2C_SendByte(uint8_t Byte);
uint8_t MyI2C_ReceiveByte(void);
void MyI2C_SendAck(uint8_t AckBit);
uint8_t MyI2C_ReceiveAck(void);

#endif

7.3 MPU6050.C

#include "stm32f10x.h"                  // Device header
#include "MyI2C.h"
#include "MPU6050_Reg.h"

#define MPU6050_ADDRESS		0xD0		//MPU6050的I2C从机地址

/**
  * 函    数:MPU6050写寄存器
  * 参    数:RegAddress 寄存器地址,范围:参考MPU6050手册的寄存器描述
  * 参    数:Data 要写入寄存器的数据,范围:0x00~0xFF
  */
void MPU6050_WriteReg(uint8_t RegAddress, uint8_t Data)
{
	MyI2C_Start();						//I2C起始
	MyI2C_SendByte(MPU6050_ADDRESS);	//发送从机地址,读写位为0,表示即将写入
	MyI2C_ReceiveAck();					//接收应答
	MyI2C_SendByte(RegAddress);			//发送寄存器地址
	MyI2C_ReceiveAck();					//接收应答
	MyI2C_SendByte(Data);				//发送要写入寄存器的数据
	MyI2C_ReceiveAck();					//接收应答
	MyI2C_Stop();						//I2C终止
}

/**
  * 函    数:MPU6050读寄存器
  * 参    数:RegAddress 寄存器地址,范围:参考MPU6050手册的寄存器描述
  * 返 回 值:读取寄存器的数据,范围:0x00~0xFF
  */
uint8_t MPU6050_ReadReg(uint8_t RegAddress)
{
	uint8_t Data;
	
	MyI2C_Start();						//I2C起始
	MyI2C_SendByte(MPU6050_ADDRESS);	//发送从机地址,读写位为0,表示即将写入
	MyI2C_ReceiveAck();					//接收应答
	MyI2C_SendByte(RegAddress);			//发送寄存器地址
	MyI2C_ReceiveAck();					//接收应答
	
	MyI2C_Start();						//I2C重复起始
	MyI2C_SendByte(MPU6050_ADDRESS | 0x01);	//发送从机地址,读写位为1,表示即将读取
	MyI2C_ReceiveAck();					//接收应答
	Data = MyI2C_ReceiveByte();			//接收指定寄存器的数据
	MyI2C_SendAck(1);					//发送应答,给从机非应答,终止从机的数据输出
	MyI2C_Stop();						//I2C终止
	
	return Data;
}

/**
  * 函    数:MPU6050初始化
  * 参    数:无
  * 返 回 值:无
  */
void MPU6050_Init(void)
{
	MyI2C_Init();									//先初始化底层的I2C
	
	/*MPU6050寄存器初始化,需要对照MPU6050手册的寄存器描述配置,此处仅配置了部分重要的寄存器*/
	MPU6050_WriteReg(MPU6050_PWR_MGMT_1, 0x01);		//电源管理寄存器1,取消睡眠模式,选择时钟源为X轴陀螺仪
	MPU6050_WriteReg(MPU6050_PWR_MGMT_2, 0x00);		//电源管理寄存器2,保持默认值0,所有轴均不待机
	MPU6050_WriteReg(MPU6050_SMPLRT_DIV, 0x09);		//采样率分频寄存器,配置采样率
	MPU6050_WriteReg(MPU6050_CONFIG, 0x06);			//配置寄存器,配置DLPF
	MPU6050_WriteReg(MPU6050_GYRO_CONFIG, 0x18);	//陀螺仪配置寄存器,选择满量程为±2000°/s
	MPU6050_WriteReg(MPU6050_ACCEL_CONFIG, 0x18);	//加速度计配置寄存器,选择满量程为±16g
}

/**
  * 函    数:MPU6050获取ID号
  * 参    数:无
  * 返 回 值:MPU6050的ID号
  */
uint8_t MPU6050_GetID(void)
{
	return MPU6050_ReadReg(MPU6050_WHO_AM_I);		//返回WHO_AM_I寄存器的值
}

/**
  * 函    数:MPU6050获取数据
  * 参    数:AccX AccY AccZ 加速度计X、Y、Z轴的数据,使用输出参数的形式返回,范围:-32768~32767
  * 参    数:GyroX GyroY GyroZ 陀螺仪X、Y、Z轴的数据,使用输出参数的形式返回,范围:-32768~32767
  * 返 回 值:无
  */
void MPU6050_GetData(int16_t *AccX, int16_t *AccY, int16_t *AccZ, 
						int16_t *GyroX, int16_t *GyroY, int16_t *GyroZ)
{
	uint8_t DataH, DataL;								//定义数据高8位和低8位的变量
	
	DataH = MPU6050_ReadReg(MPU6050_ACCEL_XOUT_H);		//读取加速度计X轴的高8位数据
	DataL = MPU6050_ReadReg(MPU6050_ACCEL_XOUT_L);		//读取加速度计X轴的低8位数据
	*AccX = (DataH << 8) | DataL;						//数据拼接,通过输出参数返回
	
	DataH = MPU6050_ReadReg(MPU6050_ACCEL_YOUT_H);		//读取加速度计Y轴的高8位数据
	DataL = MPU6050_ReadReg(MPU6050_ACCEL_YOUT_L);		//读取加速度计Y轴的低8位数据
	*AccY = (DataH << 8) | DataL;						//数据拼接,通过输出参数返回
	
	DataH = MPU6050_ReadReg(MPU6050_ACCEL_ZOUT_H);		//读取加速度计Z轴的高8位数据
	DataL = MPU6050_ReadReg(MPU6050_ACCEL_ZOUT_L);		//读取加速度计Z轴的低8位数据
	*AccZ = (DataH << 8) | DataL;						//数据拼接,通过输出参数返回
	
	DataH = MPU6050_ReadReg(MPU6050_GYRO_XOUT_H);		//读取陀螺仪X轴的高8位数据
	DataL = MPU6050_ReadReg(MPU6050_GYRO_XOUT_L);		//读取陀螺仪X轴的低8位数据
	*GyroX = (DataH << 8) | DataL;						//数据拼接,通过输出参数返回
	
	DataH = MPU6050_ReadReg(MPU6050_GYRO_YOUT_H);		//读取陀螺仪Y轴的高8位数据
	DataL = MPU6050_ReadReg(MPU6050_GYRO_YOUT_L);		//读取陀螺仪Y轴的低8位数据
	*GyroY = (DataH << 8) | DataL;						//数据拼接,通过输出参数返回
	
	DataH = MPU6050_ReadReg(MPU6050_GYRO_ZOUT_H);		//读取陀螺仪Z轴的高8位数据
	DataL = MPU6050_ReadReg(MPU6050_GYRO_ZOUT_L);		//读取陀螺仪Z轴的低8位数据
	*GyroZ = (DataH << 8) | DataL;						//数据拼接,通过输出参数返回
}

7.4 MPU6050.H

#ifndef __MPU6050_H
#define __MPU6050_H

void MPU6050_WriteReg(uint8_t RegAddress, uint8_t Data);
uint8_t MPU6050_ReadReg(uint8_t RegAddress);

void MPU6050_Init(void);
uint8_t MPU6050_GetID(void);
void MPU6050_GetData(int16_t *AccX, int16_t *AccY, int16_t *AccZ, 
						int16_t *GyroX, int16_t *GyroY, int16_t *GyroZ);

#endif

7.5 MPU6050_Reg.h

#ifndef __MPU6050_REG_H
#define __MPU6050_REG_H

#define	MPU6050_SMPLRT_DIV		0x19
#define	MPU6050_CONFIG			0x1A
#define	MPU6050_GYRO_CONFIG		0x1B
#define	MPU6050_ACCEL_CONFIG	0x1C

#define	MPU6050_ACCEL_XOUT_H	0x3B
#define	MPU6050_ACCEL_XOUT_L	0x3C
#define	MPU6050_ACCEL_YOUT_H	0x3D
#define	MPU6050_ACCEL_YOUT_L	0x3E
#define	MPU6050_ACCEL_ZOUT_H	0x3F
#define	MPU6050_ACCEL_ZOUT_L	0x40
#define	MPU6050_TEMP_OUT_H		0x41
#define	MPU6050_TEMP_OUT_L		0x42
#define	MPU6050_GYRO_XOUT_H		0x43
#define	MPU6050_GYRO_XOUT_L		0x44
#define	MPU6050_GYRO_YOUT_H		0x45
#define	MPU6050_GYRO_YOUT_L		0x46
#define	MPU6050_GYRO_ZOUT_H		0x47
#define	MPU6050_GYRO_ZOUT_L		0x48

#define	MPU6050_PWR_MGMT_1		0x6B
#define	MPU6050_PWR_MGMT_2		0x6C
#define	MPU6050_WHO_AM_I		0x75

#endif

7.6 main.c

#include "stm32f10x.h"                  // Device header
#include "Delay.h"
#include "OLED.h"
#include "MPU6050.h"

uint8_t ID;								//定义用于存放ID号的变量
int16_t AX, AY, AZ, GX, GY, GZ;			//定义用于存放各个数据的变量

int main(void)
{
	/*模块初始化*/
	OLED_Init();		//OLED初始化
	MPU6050_Init();		//MPU6050初始化
	
	/*显示ID号*/
	OLED_ShowString(1, 1, "ID:");		//显示静态字符串
	ID = MPU6050_GetID();				//获取MPU6050的ID号
	OLED_ShowHexNum(1, 4, ID, 2);		//OLED显示ID号
	
	while (1)
	{
		MPU6050_GetData(&AX, &AY, &AZ, &GX, &GY, &GZ);		//获取MPU6050的数据
		OLED_ShowSignedNum(2, 1, AX, 5);					//OLED显示数据
		OLED_ShowSignedNum(3, 1, AY, 5);
		OLED_ShowSignedNum(4, 1, AZ, 5);
		OLED_ShowSignedNum(2, 8, GX, 5);
		OLED_ShowSignedNum(3, 8, GY, 5);
		OLED_ShowSignedNum(4, 8, GZ, 5);
	}
}

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1841142.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

Vue--》从零开始打造交互体验一流的电商平台(三)

今天开始使用 vue3 + ts 搭建一个电商项目平台,因为文章会将项目的每处代码的书写都会讲解到,所以本项目会分成好几篇文章进行讲解,我会在最后一篇文章中会将项目代码开源到我的github上,大家可以自行去进行下载运行,希望本文章对有帮助的朋友们能多多关注本专栏,学习更多…

【2024】kafka streams的详细使用与案例练习(2)

目录 前言使用1、整体结构1.1、序列化 2、 Kafka Streams 常用的 API2.1、 StreamsBuilder2.2、 KStream 和 KTable2.3、 filter和 filterNot2.4、 map 和 mapValues2.5、 flatMap 和 flatMapValues2.6、 groupByKey 和 groupBy2.7、 count、reduce 和 aggregate2.8、 join 和 …

DSP28335:定时器

1.定时器介绍 1.1 定时器工作原理 TMS320F28335的CPU Time有三个&#xff0c;分别为Timer0&#xff0c;Timer1&#xff0c;Timer2&#xff0c;其中Timer2是为操作系统DSP/BIOS保留的&#xff0c;当未移植操作系统时&#xff0c;可用来做普通的定时器。这三个定时器的中断信号分…

RX8900/INS5A8900实时时钟-国产兼容RS4TC8900

该模块是一个符合I2C总线接口的实时时钟&#xff0c;包括一个32.768 kHz的DTCXO。 除了提供日历&#xff08;年、月、日、日、时、分、秒&#xff09;功能和时钟计数器功能外&#xff0c;该模块还提供了大量其他功能&#xff0c;包括报警功能、唤醒定时器功能、时间更新中断功能…

反激开关电源变压器设计1

特别注意&#xff1a;变压器计算出来的结果没有绝对的对与错 只要再全域范围内工作变压器不饱和就不能说变压器计算不对&#xff0c;&#xff08;输入全范围&#xff0c;输出全范围&#xff0c;温度度全范围&#xff09; 在变压器不饱和的情况下&#xff0c;只有优劣之分&…

数学建模基础:数学建模概述

目录 前言 一、数学建模的步骤 二、模型的分类 三、模型评价指标 四、常见的数学建模方法 实际案例&#xff1a;线性回归建模 步骤 1&#xff1a;导入数据 步骤 2&#xff1a;数据预处理 步骤 3&#xff1a;建立线性回归模型 步骤 4&#xff1a;模型验证 步骤 5&…

每日一练:攻防世界:简单的图片

这道题巨抽象&#xff01;巨抽象&#xff01;巨抽象&#xff01; 拿到图片&#xff0c;根据题目&#xff0c;尝试各种隐写方法。 这里就没思路了。查看WP。 根据题目的主办方&#xff1a;XSCTF。猜测XSCTF对应的是数字0&#xff0c;1&#xff0c;2&#xff0c;3&#xff0c;…

【WEB前端2024】3D智体编程:乔布斯3D纪念馆-第44课-骨骼动画

【WEB前端2024】3D智体编程&#xff1a;乔布斯3D纪念馆-第44课-骨骼动画 使用dtns.network德塔世界&#xff08;开源的智体世界引擎&#xff09;&#xff0c;策划和设计《乔布斯超大型的开源3D纪念馆》的系列教程。dtns.network是一款主要由JavaScript编写的智体世界引擎&…

使用docker离线制作es镜像,方便内网环境部署

1、自己在本地安装docker以及docker-compose 2、拉取elasticsearch镜像 docker pull elasticsearch:7.14.0 docker pull kibana:7.14.0 3、将拉取到的镜像打包到本地目录 docker save elasticsearch:7.14.0 -o /Users/yanjun.hou/es/elasticsearch-7.14.0.tar docker save kib…

Ps:快速添加签名或水印

一般情况下&#xff0c;建议使用矢量工具来创建签名或水印&#xff0c;这样可以保证签名图形任意缩放而不失真。但普通的摄影爱好者如果不太擅长使用矢量工具&#xff0c;可考虑下面的画笔预设法或动作法来给自己的照片添加签名&#xff0c;亦可满足日常出片需要。 ◆ ◆ ◆ …

GT_BERT文本分类

目录 GT-BERT结束语代码实现整个项目源码&#xff08;数据集模型&#xff09; GT-BERT 在为了使 BERT 模型能够得到广泛的应用,在保证模型分类准确率不降低的情况下,减少模型参数规模并降低时间复杂度,提出一种基于半监督生成对抗网络与 BERT 的文本分类模型 GT-BERT。模型的整…

DNS污染是什么?防止和清洗DNS污染的解决方案

在运营互联网业务中&#xff0c;通常会遇到各种各样的问题。其实DNS污染就是其中一个很严重的问题&#xff0c;它甚至会导致我们的业务中断&#xff0c;无法进行。今天就来了解一下DNS污染是什么&#xff1f;以及如何防止和清洗DNS污染。 什么是DNS&#xff1f; 首先我们要了解…

企业微信,机器人定时提醒

场景&#xff1a; 每天定时发送文字&#xff0c;提醒群成员事情&#xff0c;可以用机器人代替 人工提醒。 1&#xff09;在企业微信&#xff0c;创建机器人 2&#xff09;在腾讯轻联&#xff0c;创建流程&#xff0c;选择定时任务&#xff0c;执行操作&#xff08;企业微信机…

Qt利用Coin3D(OpenInventor)进行3d绘图

文章目录 1.安装1.1.下载coin3d1.2.下载quarter1.3.解压并合并 2.在Qt中使用3.画个网格4.加载wrl模型 1.安装 1.1.下载coin3d 首先&#xff0c;到官网下载[coin3d/coin] 我是Qt5.15.2vs2019的&#xff0c;因此我选择这个coin-4.0.2-msvc17-x64.zip 1.2.下载quarter 到官网…

milvus元数据解析工具milvusmetagui介绍使用

简介 milvusmetagui是一款用来对milvus的元数据进行解析的工具&#xff0c;milvus的元数据存储在etcd上&#xff0c;而且经过了序列化&#xff0c;通过etcd-manager这样的工具来查看是一堆二进制乱码&#xff0c;因此开发了这个工具对value进行反序列化解析。 在这里为了方便交…

arm-linux-strip 指令的作用

指令作用 arm-linux-strip 是一个用于从目标文件&#xff08;如可执行文件或对象文件&#xff09;中移除符号信息的工具。这些符号信息&#xff08;如函数名、变量名等&#xff09;在开发过程中很有用&#xff0c;因为它们允许调试器&#xff08;如 GDB&#xff09;确定内存地址…

安装cuda、cudnn、Pytorch(用cuda和cudnn加速计算)

写在前面 最近几个月都在忙着毕业的事&#xff0c;好一阵子没写代码了。今天准备跑个demo&#xff0c;发现报错 AssertionError: Torch not compiled with CUDA enabled 不知道啥情况&#xff0c;因为之前有cuda环境&#xff0c;能用gpu加速&#xff0c;看这个报错信息应该是P…

Elasticsearch搜索引擎(初级篇)

1.1 初识ElasticSearch | 《ElasticSearch入门到实战》电子书 (chaosopen.cn) 目录 第一章 入门 1.1 ElasticSearch需求背景 1.2 ElasticSearch 和关系型数据库的对比 1.3 基础概念 文档和字段 索引和映射 第二章 索引操作 2.0 Mapping映射属性 2.1 创建索引 DS…

Java宝藏实验资源库(1)文件

一、实验目的 掌握文件、目录管理以及文件操作的基本方法。掌握输入输出流的基本概念和流处理类的基本结构。掌握使用文件流进行文件输入输出的基本方法。 二、实验内容、过程及结果 1.显示指定目录下的每一级文件夹中的.java文件 运行代码如下 &#xff1a; import java.io.…

智慧校园综合管理系统:打造高效智慧的学校管理平台

智慧校园综合管理系统&#xff0c;作为提升教育管理与教学效率的数字化解决方案&#xff0c;它将信息技术深度融合于校园的每一个角落&#xff0c;构建了一个集信息共享、教学资源优化、智能管理、安全保障于一体的综合平台。该系统不仅提供了统一的信息门户&#xff0c;确保学…