现代谱估计分析信号的功率谱(1)---AR 模型谱估计

news2025/1/15 12:49:23

         本篇文章是博主在通信等领域学习时,用于个人学习、研究或者欣赏使用,并基于博主对通信等领域的一些理解而记录的学习摘录和笔记,若有不当和侵权之处,指出后将会立即改正,还望谅解。文章分类在通信领域笔记

          通信领域笔记(5)---《现代谱估计分析信号的功率谱(1)---AR 模型谱估计》

现代谱估计分析信号的功率谱(1)---AR 模型谱估计

目录

1 背景分析

1.1 设计要求

2 理论分析推导

2.1 AR 模型谱估计原理

2.2 AR 模型谱估计步骤

3 MATLAB 仿真

3.1 AR 模型谱估计

3.1.1 AR 模型自相关法功率谱估计

3.1.2 AR 模型协方差法功率谱估计

3.1.3 AR 模型与经典谱估计对比


1 背景分析

        现代谱估计是一种用于分析信号的功率谱的技术。与传统的基于傅里叶变换 的经典谱估计方法相比,现代谱估计具有更高的分辨率和更准确的频率估计能力。传统谱估计方法主要基于傅里叶变换,将信号从时域转换到频域,然后计算各个频率成分的功率。但是,傅里叶变换对于非周期信号和有限长度的信号存在分辨率限制,即无法准确区分频率相近的成分。此外,傅里叶变换还受到窗函数选择和泄漏效应的影响,可能导致谱估计的偏差。

        现代谱估计方法通过利用信号的自相关函数或协方差函数等统计特性,以及先进的数学工具和算法,提高了谱估计的分辨率和准确性。其中一些常见的方法包括自回归模型(AR模型)、最大熵谱估计(MESP)、最小方差无偏估计(MVUE)等。这些方法利用了信号中的统计信息,可以更好地分辨频率相近的成分,并减小窗函数选择和泄漏效应的影响。

        现代谱估计方法的发展受益于信号处理、统计学和计算机科学等多个领域的进步。随着技术的不断发展,现代谱估计方法将在更多领域得到应用,并为信号处理和数据分析提供更准确、更有效的工具。

        本次实验主要验证在时间序列分析中,AR 模型(自回归模型)和皮萨伦科(Pisarenko)分析方法的相关问题。

皮萨伦科(Pisarenko)分析方法见通信领域笔记专栏:

        《现代谱估计分析信号的功率谱(2)---Pisarenko 谐波分解法》

1.1 设计要求

        通过 MATLAB 软件产生如下信号:

        𝑥(𝑛) = 2 cos(2𝜋𝑓1𝑛) + 2 cos(2𝜋𝑓2𝑛) 2 cos(2𝜋𝑓3𝑛) + 𝑣(𝑛)

        其中𝑓1 = 0.05、𝑓2 = 0.40、𝑓3 = 0.42,𝑣(𝑛)是实高斯白噪声(信噪比由 5dB -10dB,步进 5dB),𝑓1-𝑓3均为归一化的频率。

        1)使用 AR 模型对信号进行功率谱估计,模型参数计算分别使用自相关法,协方差法。而后与经典谱估计进行对比分析,并且验证模型阶数变化时带来的影响。

        2)使用皮萨伦科(Pisarenko)分析信号成分。


2 理论分析推导

        信号建模谱估计是现代谱估计的重要方法,其中 AR 模型功率谱估计是最 常用的一种方法,这是因为 AR 模型参数的精确估计可以用解一组线性方程的方法求得,而对于 MA ARMA 模型功率谱估计来说,其参数的精确估计需要解一组高阶的非线性方程。所以实验的现代谱估计内容以 AR 模型谱估计为主来进行实验分析和验证。

2.1 AR 模型谱估计原理

2.2 AR 模型谱估计步骤


3 MATLAB 仿真

3.1 AR 模型谱估计

        首先采用归一化载波频率,设置采样点数为,生成三个不同频率的余弦信号,最后使用 awgn 函数加入高斯白噪声,生成信号𝑥𝑛

N=200;%采样点数
Fs = 1000;  %采样频率
fc1 = 0.05*Fs; % 归一化载波频率转化为载波频率
fc2 = 0.40*Fs;
fc3 = 0.42*Fs;
n = 0:1/Fs:(N-1)/Fs;

xn = 2*cos(2*pi*fc1*n) + 2*cos(2*pi*fc2*n) + 2*cos(2*pi*fc3*n);
xn = awgn(xn,5);  %加入高斯白噪声信号
nfft = N;
p=30;   %AR模型阶数
q=30;   %MA模型参数

3.1.1 AR 模型自相关法功率谱估计

        直接调用 Matlab 中的 pyulear 函数估计功率谱,设置高斯白噪声信噪比 SNR 为 5

%%自相关法求AR模型参数
[Pxx1,F1]=pyulear(xn,p,N,Fs);%直接调用matlab中的pyulear函数估计功率谱
Pxx1=10*log10(Pxx1);
figure(1);
plot(F1,Pxx1);
title('AR模型自相关法');

        分别观察在不同的阶下,自相关法求解 AR 模型功率谱参数,阶次的选取以 步进 8102030 为选择,分别得到了 AR 模型在 2 阶、10 阶、20 阶、30 阶、60 阶、80 阶、110 阶、130 阶的情况下得到的功率谱参数情况。

        从图中可以看到,在阶次不断增加的情况下,归一化频率 0.40.42 的区分度由不清晰到区分度越来越清晰,但随着阶次的增高,尤其是在 80 阶以后,尽管分辨率比较高,但出现的虚假谱峰也越来越多。我们知道,一个经验法则是:AR 模型阶次应该选择在 𝑁/3 𝑁/2之间,N 表示采样点数,这样可以得到谱估计的高分辨率。本次实验使用自相关法求谱估计参数时,选取的采样点数为 256,因此模型阶次的建议选择为 85<N<128,但根据目前的具体实验结果来看,选择30 阶的 AR 模型既可以区分 0.40.42 频率,也没有较多的虚假谱峰,因此优先选择 30 阶的 AR 模型进行谱估计。下面将采用协方差法求解不同次阶的 AR 模型,并分析。

3.1.2 AR 模型协方差法功率谱估计

        直接调用 Matlab 中的 pburg 函数估计功率谱,设置高斯白噪声信噪比 SNR 为 5

%%协方差法求AR模型参数
[Pxx2,F2]=pburg(xn,p,N,Fs);%直接调用matlab中的pburg估计功率谱
Pxx2=10*log10(Pxx2);
figure(2);
plot(F2,Pxx2);
title('AR模型协方差法');

        从图中可以看到,在阶次低于 30 阶的情况下,归一化频率 0.40.42 的区分度由不清晰到区分度越来越清晰;但随着阶次的增高,在阶次 40 60 阶的情况下,出现了较大的虚假谱峰,导致无法区分归一化频率 0.40.42;尤其是在 60 阶以后,已经区分不了归一化频率 0.40.42。根据目前的具体实验结果来看,不论是自相关法还是协方差法的 AR 模型估计功率谱,选择 30 阶的 AR 模型既可以区分 0.40.42 频率,也没有较多的虚假谱峰,因此优先选择 30 阶的 AR 模型进行谱估计。下面将采用 30 阶的 AR 模型谱估计对比经典谱估计,并分析。

3.1.3 AR 模型与经典谱估计对比

        采用经典谱估计的直接法和间接法估计功率谱,并对比 30 阶的 AR 模型自相关法和协方差法估计功率谱,初始信噪比 SNR 设置为 5dB,信噪比 SNR 步进幅度为-5dB

        由图可以看出,四种不同的谱估计方法在SNB=-5dB皆可以有效的估计出功率谱,能够清晰的区分相近频率。那么接下来将不断减小信噪比 SNR,比较功率谱估计情况。

还可以比较:

  • 四种方法在 SNB=0dB 时功率谱估计都可以取得相对不错的效果。

  • 四种方法在 SNB=-5dB 时功率谱估计都还可以区分相近频率点,但是经典谱估计的直接法出现的虚假谱峰较高,已经影响了判别。

  • 四种方法在 SNB=-10dB 时,经典谱估计直接法已经无法识别,经典谱估计间接法功率、AR 模型谱估计自相关法和协方差法还勉强可以识别,经典谱估计间接法功率相对更优。

  • 四种方法在 SNB=-15dB 时,此时四种方法皆不可以识别相近谱峰,无法使用这四种方法进行谱估计。


     文章若有不当和不正确之处,还望理解与指出。由于部分文字、图片等来源于互联网,无法核实真实出处,如涉及相关争议,请联系博主删除。如有错误、疑问和侵权,欢迎评论留言联系作者,或者关注VX公众号:Rain21321,联系作者。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1839079.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

1951–2021年欧洲地区木本植物的格网物候数据集

本数据集包含1951–2021年欧洲地区&#xff08;3457′N – 723′N&#xff0c;253′W – 403′E&#xff09;6种木本植物的逐年展叶始期和开花始期格网数据&#xff0c;空间分辨率为0.1&#xff0c;时间分辨率为1天。数据集的质量评估表明&#xff0c;欧洲地区各物种展叶始期和…

车载语音识别系统语音数据采集标注案例

随着人工智能技术的不断发展&#xff0c;其在我们日常生活工作场景中的应用也越来越普及&#xff0c;人工智能技术在不同场景的普及大大的提高了我们日常生活、工作的高效性和便利性。以我们的日常出行为例&#xff0c;车载语音识别系统便是一种典型的人工智能应用场景。 车载…

大咖专栏 | AI 时代下,我们可以拥有怎样的数据库?

Hi&#xff0c;各位朋友们&#xff0c;我是 KaiwuDB 高级架构师赵衎衎。 KaiwuDB 始于万物互联时代下千万条数据洪流中&#xff0c;我们持续打磨构造了更加灵活兼容的分布式多模架构&#xff0c;实现了海量异构数据高性能、低成本的集中管理… …这些底层特性都在为后续提供更…

初见DP

线性DP 例题1 1143. 最长公共子序列 &#xff08;LCS&#xff09; 子序列不连续 给定两个字符串 text1 和 text2&#xff0c;返回这两个字符串的最长 公共子序列 的长度。如果不存在 公共子序列 &#xff0c;返回 0 。 一个字符串的 子序列 是指这样一个新的字符串&#x…

单片机第五季-第八课:STM32CubeMx和FreeRTOS

1&#xff0c;FreeRTOS背景介绍 RTOS简介&#xff1a; 实时操作系统&#xff0c;本用于追求实时性的嵌入式系统&#xff0c;典型&#xff1a;ucos/uclinux/vxworks&#xff1b; 特点&#xff1a;中断响应快、一般可嵌套中断、使用实地址、多任务&#xff1b; &#xff08;实…

如何用Vue3构建一个交互式树状图

本文由ScriptEcho平台提供技术支持 项目地址&#xff1a;传送门 Vue 3 ApexCharts Treemap 组件&#xff1a;可视化多维数据 应用场景 树形图&#xff08;Treemap&#xff09;是一种可视化多维数据的有效方式&#xff0c;特别适用于展示层次结构数据或按类别分组的数据。它…

Flink 资源静态调度

本内容是根据 Flink 1.18.0-Scala_2.12 版本源码梳理而来。本文主要讲述任务提交时&#xff0c;为 Task 分配资源的过程。 以下是具体步骤讲解&#xff1a; TaskManager 资源注册 TaskManager 再启动时&#xff0c;会向 ResourceManager 注册资源。ResourceManager 会将 Tas…

Debian12安装Nvidia官方驱动

1、下载驱动&#xff08;下载到一个英文目录例如你的用户目录/home/用户名下&#xff0c;我下载到dowload目录&#xff0c;由于默认显示中文&#xff0c;在命令行不支持中文显示的是一串数字&#xff0c;当然你仍然可以cd 那串数字进目录&#xff0c;显示有有引号就加引号&…

香港优才计划申请打分、材料、递交攻略,2024年获批后我来分享

香港优才计划这两年很多人弄啊&#xff0c;糖爸作为获批过来人&#xff0c;我来给大家分享香港优才计划申请攻略。 一、香港优才计划如何计算分数&#xff1f; 香港优才计划申请条件分2部分&#xff1a;第一是基本资格要求&#xff0c;第二是计分制度&#xff1b; 基本条件简…

前端框架中的路由(Routing)和前端导航(Front-End Navigation)

聚沙成塔每天进步一点点 本文回顾 ⭐ 专栏简介前端框架中的路由&#xff08;Routing&#xff09;和前端导航&#xff08;Front-End Navigation&#xff09;1. 路由&#xff08;Routing&#xff09;1.1 定义1.2 路由的核心概念1.2.1 路由表&#xff08;Route Table&#xff09;1…

Pentest Muse:一款专为网络安全人员设计的AI助手

关于Pentest Muse Pentest Muse是一款专为网络安全研究人员和渗透测试人员设计和开发的人工智能AI助手&#xff0c;该工具可以帮助渗透测试人员进行头脑风暴、编写Payload、分析代码或执行网络侦查任务。除此之外&#xff0c;Pentest Muse甚至还能够执行命令行代码并以迭代方式…

【信息资源组织与管理】【开卷考】如何准备 期末考试复习必备

索引篇 先去xhs找了开卷考有什么准备技巧&#xff0c;来自Prozac ❗️首先&#xff0c;适用于考试范围为课本内容或者课堂内容&#xff0c;如果有那种拓展题&#xff0c;脱离课本的&#xff0c;那我就没办法了。 ✅一定要熟悉熟悉熟悉课本 1. 第一遍略看课本&#xff0c;可以不…

navcat 随机生成数据

我最近才知道navcat能随机生成数据&#xff0c;所以分享下 下一步&#xff0c;下一步就可以了&#xff0c;我们就成功了

芯片验证分享9 —— 芯片调试

大家好&#xff0c;我是谷公子&#xff0c;之前的课程给大家讲了验证原则、激励设计和代码审查&#xff0c;今天我们来讲芯片调试。 芯片调试是执行一次成功的验证之后要进行的工作。记住&#xff0c;所谓成功的验证&#xff0c;是指它可以证明芯片没有实现预期的功能。调试主…

不是所有洗碗机都能空气除菌 友嘉灵晶空气除菌洗碗机评测

精致的三餐让你以为生活是“享受”&#xff0c;可饭后那些油腻的锅碗瓢盆却成了你我美好生活的最大障碍。想要只吃美食不洗碗&#xff0c;那一台优秀的洗碗机就必不可少了&#xff01;今天&#xff0c;ZOL中关村在线要评测的就是这样一台不光洗得干净更能有效除菌抑菌的洗碗机—…

UE4_材质_湿度着色器及Desaturation算法_ben材质教程

学习笔记&#xff0c;不喜勿喷&#xff01;侵权立删&#xff0c;祝愿美好生活越来越好。 效果图&#xff1a; 原图&#xff1a; 1、使用初学者内容包的材质 我们这里使用虚幻自带的材质M_Brick_Clay_Old,复制一个更名为M_Brickclayoldwet材质。 2、添加去饱和度Desaturation节…

【尝鲜】SpringCloudAlibaba AI 配置使用教程

1、环境配置 maven依赖pom.xml 注意配置远程仓库&#xff0c;原因见&#xff1a;Unresolved dependency: ‘org.springframework.ai:spring-ai-core:jar:0.8.1’ <dependencies><!--Base--><dependency><groupId>org.springframework.boot</group…

【Spine学习14】之 裁剪

1、新建裁剪 2、在页面中随便点几下 圈出对应位置 3、点编辑裁剪 或者按空格键 退出编辑模式&#xff0c; 页面就只剩下对应区域&#xff0c;这个区域可以任意拖动 放大缩小显示。 tips&#xff1a; 如果手动选择区域描绘不准确&#xff0c;可以启用对应图片的网格 然后复制…

SSM小区车辆信息管理系统-计算机毕业设计源码06111

摘 要 科技进步的飞速发展引起人们日常生活的巨大变化&#xff0c;电子信息技术的飞速发展使得电子信息技术的各个领域的应用水平得到普及和应用。信息时代的到来已成为不可阻挡的时尚潮流&#xff0c;人类发展的历史正进入一个新时代。在现实运用中&#xff0c;应用软件的工作…

【超越拟合:深度学习中的过拟合与欠拟合应对策略】

如何处理过拟合 由于过拟合的主要问题是你的模型与训练数据拟合得太好&#xff0c;因此你需要使用技术来“控制它”。防止过拟合的常用技术称为正则化。我喜欢将其视为“使我们的模型更加规则”&#xff0c;例如能够拟合更多类型的数据。 让我们讨论一些防止过拟合的方法。 获…