训练营第四十二天| 583. 两个字符串的删除操作72. 编辑距离647. 回文子串516.最长回文子序列

news2024/11/20 0:40:02

583. 两个字符串的删除操作

力扣题目链接(opens new window)

给定两个单词 word1 和 word2,找到使得 word1 和 word2 相同所需的最小步数,每步可以删除任意一个字符串中的一个字符。

示例:

  • 输入: "sea", "eat"
  • 输出: 2
  • 解释: 第一步将"sea"变为"ea",第二步将"eat"变为"ea"

思路

动态规划一

本题和动态规划:115.不同的子序列 (opens new window)相比,其实就是两个字符串都可以删除了。动规五部曲,分析如下:

  1. 确定dp数组(dp table)以及下标的含义

dp[i][j]:以i-1为结尾的字符串word1,和以j-1位结尾的字符串word2,想要达到相等,所需要删除元素的最少次数。

这里dp数组的定义有点点绕,大家要撸清思路。

  1. 确定递推公式
  • 当word1[i - 1] 与 word2[j - 1]相同的时候
  • 当word1[i - 1] 与 word2[j - 1]不相同的时候

当word1[i - 1] 与 word2[j - 1]相同的时候,dp[i][j] = dp[i - 1][j - 1];

当word1[i - 1] 与 word2[j - 1]不相同的时候,有三种情况:

情况一:删word1[i - 1],最少操作次数为dp[i - 1][j] + 1

情况二:删word2[j - 1],最少操作次数为dp[i][j - 1] + 1

情况三:同时删word1[i - 1]和word2[j - 1],操作的最少次数为dp[i - 1][j - 1] + 2

那最后当然是取最小值,所以当word1[i - 1] 与 word2[j - 1]不相同的时候,递推公式:dp[i][j] = min({dp[i - 1][j - 1] + 2, dp[i - 1][j] + 1, dp[i][j - 1] + 1});

因为 dp[i][j - 1] + 1 = dp[i - 1][j - 1] + 2,所以递推公式可简化为:dp[i][j] = min(dp[i - 1][j] + 1, dp[i][j - 1] + 1);

这里可能不少录友有点迷糊,从字面上理解 就是 当 同时删word1[i - 1]和word2[j - 1],dp[i][j-1] 本来就不考虑 word2[j - 1]了,那么我在删 word1[i - 1],是不是就达到两个元素都删除的效果,即 dp[i][j-1] + 1。

  1. dp数组如何初始化

dp[i][0]:word2为空字符串,以i-1为结尾的字符串word1要删除多少个元素,才能和word2相同呢,很明显dp[i][0] = i。

2 .确定遍历顺序

从递推公式 dp[i][j] = min(dp[i - 1][j] + 1, dp[i][j - 1]) + 1); 和dp[i][j] = dp[i - 1][j - 1]可以看出dp[i][j]都是根据左上方、正上方、正左方推出来的。

所以遍历的时候一定是从上到下,从左到右,这样保证dp[i][j]可以根据之前计算出来的数值进行计算。

class Solution {
public:
    int minDistance(string word1, string word2) {
        vector<vector<int>> dp(word1.size() + 1, vector<int>(word2.size() + 1));
        for (int i = 0; i <= word1.size(); i++) dp[i][0] = i;
        for (int j = 0; j <= word2.size(); j++) dp[0][j] = j;
        for (int i = 1; i <= word1.size(); i++) {
            for (int j = 1; j <= word2.size(); j++) {
                if (word1[i - 1] == word2[j - 1]) {
                    dp[i][j] = dp[i - 1][j - 1];
                } else {
                    dp[i][j] = min(dp[i - 1][j] + 1, dp[i][j - 1] + 1);
                }
            }
        }
        return dp[word1.size()][word2.size()];
    }
};

  • 时间复杂度: O(n * m)
  • 空间复杂度: O(n * m)

#动态规划二

本题和动态规划:1143.最长公共子序列 (opens new window)基本相同,只要求出两个字符串的最长公共子序列长度即可,那么除了最长公共子序列之外的字符都是必须删除的,最后用两个字符串的总长度减去两个最长公共子序列的长度就是删除的最少步数。

代码如下:

class Solution {
public:
    int minDistance(string word1, string word2) {
        vector<vector<int>> dp(word1.size()+1, vector<int>(word2.size()+1, 0));
        for (int i=1; i<=word1.size(); i++){
            for (int j=1; j<=word2.size(); j++){
                if (word1[i-1] == word2[j-1]) dp[i][j] = dp[i-1][j-1] + 1;
                else dp[i][j] = max(dp[i-1][j], dp[i][j-1]);
            }
        }
        return word1.size()+word2.size()-dp[word1.size()][word2.size()]*2;
    }
};

  • 时间复杂度: O(n * m)
  • 空间复杂度: O(n * m)

72. 编辑距离

力扣题目链接(opens new window)

给你两个单词 word1 和 word2,请你计算出将 word1 转换成 word2 所使用的最少操作数 。

你可以对一个单词进行如下三种操作:

  • 插入一个字符

  • 删除一个字符

  • 替换一个字符

  • 示例 1:

  • 输入:word1 = "horse", word2 = "ros"

  • 输出:3

  • 解释: horse -> rorse (将 'h' 替换为 'r') rorse -> rose (删除 'r') rose -> ros (删除 'e')

  • 示例 2:

  • 输入:word1 = "intention", word2 = "execution"

  • 输出:5

  • 解释: intention -> inention (删除 't') inention -> enention (将 'i' 替换为 'e') enention -> exention (将 'n' 替换为 'x') exention -> exection (将 'n' 替换为 'c') exection -> execution (插入 'u')

提示:

  • 0 <= word1.length, word2.length <= 500
  • word1 和 word2 由小写英文字母组成

思路

#1. 确定dp数组(dp table)以及下标的含义

dp[i][j] 表示以下标i-1为结尾的字符串word1,和以下标j-1为结尾的字符串word2,最近编辑距离为dp[i][j]

#2. 确定递推公式

if (word1[i - 1] == word2[j - 1]) 那么说明不用任何编辑,即dp[i][j] = dp[i - 1][j - 1];

if (word1[i - 1] != word2[j - 1]),此时就需要编辑了:

  • 操作一:word1删除一个元素,那么就是以下标i - 2为结尾的word1 与 j-1为结尾的word2的最近编辑距离 再加上一个操作。

即 dp[i][j] = dp[i - 1][j] + 1;

  • 操作二:word2删除一个元素,那么就是以下标i - 1为结尾的word1 与 j-2为结尾的word2的最近编辑距离 再加上一个操作。

即 dp[i][j] = dp[i][j - 1] + 1;

word2添加一个元素,相当于word1删除一个元素,例如 word1 = "ad" ,word2 = "a"word1删除元素'd' 和 word2添加一个元素'd',变成word1="a", word2="ad"

操作三:替换元素,word1替换word1[i - 1],使其与word2[j - 1]相同,此时不用增删加元素。

可以回顾一下,if (word1[i - 1] == word2[j - 1])的时候我们的操作 是 dp[i][j] = dp[i - 1][j - 1] 对吧。

那么只需要一次替换的操作,就可以让 word1[i - 1] 和 word2[j - 1] 相同。

所以 dp[i][j] = dp[i - 1][j - 1] + 1;

综上,当 if (word1[i - 1] != word2[j - 1]) 时取最小的,即:dp[i][j] = min({dp[i - 1][j - 1], dp[i - 1][j], dp[i][j - 1]}) + 1;

递归公式代码如下:

if (word1[i - 1] == word2[j - 1]) {
    dp[i][j] = dp[i - 1][j - 1];
}
else {
    dp[i][j] = min({dp[i - 1][j - 1], dp[i - 1][j], dp[i][j - 1]}) + 1;
}

#3. dp数组如何初始化

再回顾一下dp[i][j]的定义:

dp[i][j] 表示以下标i-1为结尾的字符串word1,和以下标j-1为结尾的字符串word2,最近编辑距离为dp[i][j]

dp[i][0] :以下标i-1为结尾的字符串word1,和空字符串word2,最近编辑距离为dp[i][0]。

那么dp[i][0]就应该是i,对word1里的元素全部做删除操作,即:dp[i][0] = i; 同理dp[0][j] = j;

#4. 确定遍历顺序

从左到右从上到下去遍历。

class Solution {
public:
    int minDistance(string word1, string word2) {
        vector<vector<int>> dp(word1.size() + 1, vector<int>(word2.size() + 1, 0));
        for (int i = 0; i <= word1.size(); i++) dp[i][0] = i;
        for (int j = 0; j <= word2.size(); j++) dp[0][j] = j;
        for (int i = 1; i <= word1.size(); i++) {
            for (int j = 1; j <= word2.size(); j++) {
                if (word1[i - 1] == word2[j - 1]) {
                    dp[i][j] = dp[i - 1][j - 1];
                }
                else {
                    dp[i][j] = min({dp[i - 1][j - 1], dp[i - 1][j], dp[i][j - 1]}) + 1;
                }
            }
        }
        return dp[word1.size()][word2.size()];
    }
};

  • 时间复杂度: O(n * m)
  • 空间复杂度: O(n * m)

647. 回文子串

力扣题目链接(opens new window)

给定一个字符串,你的任务是计算这个字符串中有多少个回文子串。

具有不同开始位置或结束位置的子串,即使是由相同的字符组成,也会被视作不同的子串。

示例 1:

  • 输入:"abc"
  • 输出:3
  • 解释:三个回文子串: "a", "b", "c"

示例 2:

  • 输入:"aaa"
  • 输出:6
  • 解释:6个回文子串: "a", "a", "a", "aa", "aa", "aaa"

提示:输入的字符串长度不会超过 1000 。

思路

暴力解法

两层for循环,遍历区间起始位置和终止位置,然后还需要一层遍历判断这个区间是不是回文。所以时间复杂度:O(n^3)

动态规划

动规五部曲:

  1. 确定dp数组(dp table)以及下标的含义

布尔类型的dp[i][j]:表示区间范围[i,j] (注意是左闭右闭)的子串是否是回文子串,如果是dp[i][j]为true,否则为false。

  1. 确定递推公式

在确定递推公式时,就要分析如下几种情况。

整体上是两种,就是s[i]与s[j]相等,s[i]与s[j]不相等这两种。

当s[i]与s[j]不相等,那没啥好说的了,dp[i][j]一定是false。

当s[i]与s[j]相等时,这就复杂一些了,有如下三种情况

  • 情况一:下标i 与 j相同,同一个字符例如a,当然是回文子串
  • 情况二:下标i 与 j相差为1,例如aa,也是回文子串
  • 情况三:下标:i 与 j相差大于1的时候,例如cabac,此时s[i]与s[j]已经相同了,我们看i到j区间是不是回文子串就看aba是不是回文就可以了,那么aba的区间就是 i+1 与 j-1区间,这个区间是不是回文就看dp[i + 1][j - 1]是否为true。

以上三种情况分析完了,那么递归公式如下:

if (s[i] == s[j]) {
    if (j - i <= 1) { // 情况一 和 情况二
        result++;
        dp[i][j] = true;
    } else if (dp[i + 1][j - 1]) { // 情况三
        result++;
        dp[i][j] = true;
    }
}

result就是统计回文子串的数量。

注意这里我没有列出当s[i]与s[j]不相等的时候,因为在下面dp[i][j]初始化的时候,就初始为false。

  1. dp数组初始化为false。
  2. 确定遍历顺序

遍历顺序可有有点讲究了。

首先从递推公式中可以看出,情况三是根据dp[i + 1][j - 1]是否为true,在对dp[i][j]进行赋值true的。

dp[i + 1][j - 1] 在 dp[i][j]的左下角,如图:

647.回文子串

如果这矩阵是从上到下,从左到右遍历,那么会用到没有计算过的dp[i + 1][j - 1],也就是根据不确定是不是回文的区间[i+1,j-1],来判断了[i,j]是不是回文,那结果一定是不对的。

所以一定要从下到上,从左到右遍历,这样保证dp[i + 1][j - 1]都是经过计算的

注意因为dp[i][j]的定义,所以j一定是大于等于i的,那么在填充dp[i][j]的时候一定是只填充右上半部分

class Solution {
public:
    int countSubstrings(string s) {
        vector<vector<bool>> dp(s.size(), vector<bool>(s.size(), false));
        int result = 0;
        for (int i = s.size() - 1; i >= 0; i--) {
            for (int j = i; j < s.size(); j++) {
                if (s[i] == s[j] && (j - i <= 1 || dp[i + 1][j - 1])) {
                    result++;
                    dp[i][j] = true;
                }
            }
        }
        return result;
    }
};
  • 时间复杂度:O(n^2)
  • 空间复杂度:O(n^2)

#双指针法

动态规划的空间复杂度是偏高的,我们再看一下双指针法。

首先确定回文串,就是找中心然后向两边扩散看是不是对称的就可以了。

在遍历中心点的时候,要注意中心点有两种情况

一个元素可以作为中心点,两个元素也可以作为中心点。

那么有人同学问了,三个元素还可以做中心点呢。其实三个元素就可以由一个元素左右添加元素得到,四个元素则可以由两个元素左右添加元素得到。

所以我们在计算的时候,要注意一个元素为中心点和两个元素为中心点的情况。

这两种情况可以放在一起计算,但分别计算思路更清晰,我倾向于分别计算,代码如下:

class Solution {
public:
    int countSubstrings(string s) {
        int result = 0;
        for (int i = 0; i < s.size(); i++) {
            result += extend(s, i, i, s.size()); // 以i为中心
            result += extend(s, i, i + 1, s.size()); // 以i和i+1为中心
        }
        return result;
    }
    int extend(const string& s, int i, int j, int n) {
        int res = 0;
        while (i >= 0 && j < n && s[i] == s[j]) {
            i--;
            j++;
            res++;
        }
        return res;
    }
};
  • 时间复杂度:O(n^2)
  • 空间复杂度:O(1)

516.最长回文子序列

力扣题目链接(opens new window)

给定一个字符串 s ,找到其中最长的回文子序列,并返回该序列的长度。可以假设 s 的最大长度为 1000 。

示例 1: 输入: "bbbab" 输出: 4 一个可能的最长回文子序列为 "bbbb"。

示例 2: 输入:"cbbd" 输出: 2 一个可能的最长回文子序列为 "bb"。

提示:

  • 1 <= s.length <= 1000
  • s 只包含小写英文字母

思路

 动态规划:回文子串 (opens new window),求的是回文子串,而本题要求的是回文子序列。

回文子串是要连续的,回文子序列可不是连续的! 

动规五部曲分析如下:

  1. 确定dp数组(dp table)以及下标的含义

dp[i][j]:字符串s在[i, j]范围内最长的回文子序列的长度为dp[i][j]

  1. 确定递推公式

如果s[i]与s[j]相同,那么dp[i][j] = dp[i + 1][j - 1] + 2;

如图: 

516.最长回文子序列

如果s[i]与s[j]不相同,说明s[i]和s[j]的同时加入 并不能增加[i,j]区间回文子序列的长度,那么分别加入s[i]、s[j]看看哪一个可以组成最长的回文子序列。

加入s[j]的回文子序列长度为dp[i + 1][j]。

加入s[i]的回文子序列长度为dp[i][j - 1]。

那么dp[i][j]一定是取最大的,即:dp[i][j] = max(dp[i + 1][j], dp[i][j - 1]);

516.最长回文子序列1

  1. dp数组初始化

首先要考虑当i 和j 相同的情况,从递推公式:dp[i][j] = dp[i + 1][j - 1] + 2; 可以看出 递推公式是计算不到 i 和j相同时候的情况。

所以需要手动初始化一下,当i与j相同,那么dp[i][j]一定是等于1的,即:一个字符的回文子序列长度就是1。

其他情况dp[i][j]初始为0就行,这样递推公式:dp[i][j] = max(dp[i + 1][j], dp[i][j - 1]); 中dp[i][j]才不会被初始值覆盖。

  1. 确定遍历顺序

从递归公式中,可以看出,dp[i][j] 依赖于 dp[i + 1][j - 1] ,dp[i + 1][j] 和 dp[i][j - 1],如图:

所以遍历i的时候一定要从下到上遍历,这样才能保证下一行的数据是经过计算的

j的话,可以正常从左向右遍历。

class Solution {
public:
    int longestPalindromeSubseq(string s) {
        vector<vector<int>> dp(s.size(), vector<int>(s.size(), 0));
        for (int i = 0; i < s.size(); i++) dp[i][i] = 1;
        for (int i = s.size() - 1; i >= 0; i--) {
            for (int j = i + 1; j < s.size(); j++) {
                if (s[i] == s[j]) {
                    dp[i][j] = dp[i + 1][j - 1] + 2;
                } else {
                    dp[i][j] = max(dp[i + 1][j], dp[i][j - 1]);
                }
            }
        }
        return dp[0][s.size() - 1];
    }
};
  • 时间复杂度: O(n^2)
  • 空间复杂度: O(n^2)

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1838268.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

71. UE5 RPG 实现敌人召唤技能

在这一篇文章中&#xff0c;我们要实现敌人的召唤师能够召唤自己的仆从进行作战。 要实现这个技能&#xff0c;我们首先创建新的敌人蓝图&#xff0c;用于召唤。接着&#xff0c;我们将实现一个召唤技能基类&#xff0c;在基类中实现在召唤师的周围获取到可以生成的位置点&…

数据结构与算法笔记:基础篇 - 分治算法:谈一谈大规模计算框架MapReduce中的分治思想

概述 MapReduce 是 Google 大数据处理的三姐马车之一&#xff0c;另外两个事 GFS 和 Bigtable。它在倒排索引、PageRank 计算、网页分析等搜索引擎相关的技术中都有大量的应用。 尽管开发一个 MapReduce 看起来很高深。实际上&#xff0c;万变不离其宗&#xff0c;它的本质就…

【nginx】 nginx核心功能

【nginx】 nginx核心功能 1.nginx核心功能 1. 反向代理 2. 负载均衡 3. 动静分离 4. nginx的高可用2. 反向代理 正向代理: 该服务器代理的是客户端&#xff0c;对于服务器来说&#xff0c;不知道真实客户端的ip。比如: 翻墙软件。 访问国外的服务器---使用了翻墙软件----对…

响应式高端网站模板源码图库素材 资源下载平台源码

源码介绍 亲测可用&#xff0c;可用于做娱乐网资源网&#xff0c;功能非常的齐全无任何加密也无任何后门&#xff01;响应式高端网站模板源码图库素材 资源下载平台源码&#xff08;可运营&#xff09; 页面很美观&#xff0c;堪比大型网站的美工&#xff0c;而且页面做的也很…

GRIT论文阅读笔记

一篇试图统一生成任务和编码任务的工作&#xff0c;就是把只能完成生成任务的GPT改成既能生成又能encode。思路其实很简单&#xff0c;就是在输入的时候添加instruction tokens来指引模型做representation还是generation&#xff0c;然后各自算损失。representation任务用的是d…

【操作系统】操作系统实验02-生产者消费者程序改进

1. 说明文档中原有程序实现的功能、实现方法。&#xff08;用语言、程序流程图、为原有程序添加注释等方式均可&#xff09; 1.//const.h 2.//定义宏变量 3.#ifndef CONST_H 4.#define CONST_H 5. 6.#define TRUE 1 7.#define FALSE 0 8.#define ERROR 0 9.#define OVERFLOW -…

据阿谱尔APO Research调研显示,2023年全球水凝胶市场销售额约为14.2亿美元

根据阿谱尔 (APO Research&#xff09;的统计及预测&#xff0c;2023年全球水凝胶市场销售额约为14.2亿美元&#xff0c;预计在2024-2030年预测期内将以超过5.0%的CAGR&#xff08;年复合增长率&#xff09;增长。 水凝胶有多种应用&#xff0c;包括个人护理、制药、农业及其他…

界面组件Kendo UI for Angular 2024 Q2亮点 - 让应用程序界面拥有AI提示

随着最新的2024年第二季度发布&#xff0c;Kendo UI for Angular为应用程序开发设定了标准&#xff0c;包括生成式AI集成、增强的设计系统功能和可访问的数据可视化。新的2024年第二季度版本为应用程序界面提供了人工智能(AI)提示&#xff0c;从设计到代码的生产力增强、可访问…

卷积神经网络(CNN)理解

1、引言&#xff08;卷积概念&#xff09; 在介绍CNN中卷积概念之前&#xff0c;先介绍一个数字图像中“边缘检测edge detection”案例&#xff0c;以加深对卷积的认识。图中为大小8X8的灰度图片&#xff0c;图片中数值表示该像素的灰度值。像素值越大&#xff0c;颜色越亮&…

ByteTrack跟踪理解

1.ByteTrack 核心思路 &#xff08;1&#xff09;区分高置信度检测框与低置信度检测框&#xff0c;不同置信度检测框采取不同处理方式。 &#xff08;2&#xff09;保留低置信度检测框&#xff0c;在后续可能会重新确认为 confirm 状态。而不是像传统 MOT 算法选择删除。 2.…

视频行人搜索 (Person Search in Videos)

文章目录 视频行人搜索 (Person Search in Videos)图像行人搜索存在问题Video PS 定义MTA-PS数据集First person search dataset in videosComplicated ambient conditions and realistic monitoring scenariosPrivacy insensitivity 方法 视频行人搜索 (Person Search in Vide…

Nacos从入门到实战

一、Nacos介绍 1.什么是Nacos 官方&#xff1a;一个更易于构建云原生应用的动态服务发现&#xff08;Nacos Discovery&#xff09;、服务配置&#xff08;Nacos Config&#xff09;和服务管理平台 集 注册中心配置中心服务管理 平台 注册中心&#xff1a;把所有的服务注册进去…

Redis变慢了?

Redis变慢了&#xff1f; 什么是Redis&#xff1f;测定Redis变慢&#xff1f;最大响应延迟平均响应延迟设置Redis慢日志 分析Redis变慢bigkeysbigkey的危害bigkey优化 写在最后 什么是Redis&#xff1f; 作为一个技术人员来说&#xff0c;大家用的最多的可能就是Redis了&#…

BottomSheet 半模态视图

先看效果图: 越来越多的app,使用半模态视图,弹窗从底部弹窗,手动滑动收起。交互流程丝滑,体验流畅。我这一研究才发现,官方出了一个控件叫 UISheetPresentationController,使用起来及其方便,只需要关注业务逻辑就可以,着急的朋友可以直接把demo拿去。BottomSheetDemo…

Java new HashMap 指定容量,代码怎么写? 学习源码小记

之前针对 创建map 指定容量&#xff0c;写过一篇吐槽教学文章&#xff1a;HashMap 使用的时候指定容量&#xff1f;你真的用明白了吗&#xff1f;&#xff08;值得一阅&#xff09;_new hashmap<>(4);-CSDN博客 因为我们经常要通过代码做一些数据的分组&#xff0c;比如查…

第二证券股市资讯:昨夜!全球新“股王”诞生

昨晚&#xff0c;英伟达成全球市值榜首公司。 当地时间6月18日&#xff0c;美股三大指数小幅收高&#xff0c;标普500指数与纳指再创前史新高。标普500指数涨0.25%&#xff0c;道指涨0.15%&#xff0c;纳指涨0.03%。 AI热潮推动英伟达大涨&#xff0c;市值逾越微软、苹果&…

jsp运行提示_jsp.java某行存在错误问题的解决

jsp运行提示XXX_jsp.java某行存在错误问题的解决 在编译运行jsp文件时&#xff0c;出现类似如下提示&#xff1a; 49行发生错误&#xff0c;要注意&#xff1a; 这里所指的49行并非jsp文件的第49行&#xff0c;而是编译后的jsp.java文件的第49行。 因此&#xff1a;解决问题…

国际导师上海面授大规模敏捷LeSS认证2024年8月22-24日开班 | 报名享特大福利

课堂互动练习 学员反馈 • “LeSS课我正经听过的有3次&#xff1b;两次Bas Vodde主讲&#xff0c;一次吕毅老师主讲。第一次应该是2015年&#xff0c;这门课中体现的对组织运作和产品开发底层逻辑的洞见令我折服。后来又陆续听了两次&#xff0c;每次都有更多体会。 我试着从一…

Linux中git无法提交,出现不知道身份时的错误,无法检测到有效的电子邮件地址以关联代码的提交

在输入 git commit -m "日志信息"时&#xff0c;出现下列问题。 这是因为Git无法检测到有效的电子邮件地址以关联代码的提交。 一、设置用户邮箱和用户名 使用以下命令来设置你的用户邮箱和用户名。请确保将youexample.com替换为你的实际邮箱地址&#xff0c;并将Y…

2024香港人才引进计划有哪些?申请条件、政策、利弊一次性说清楚

2024香港人才引进计划有哪些&#xff1f; 拥有香港身份&#xff0c;不仅可以享受到优质的教育资源、税收优惠、以及国际化的商业环境&#xff0c;还能在金融、商业、法律保障和生活品质等方面获得显著的好处。 而这&#xff0c;也是很多内地精英人群&#xff0c;通过申请香港…