一篇文章了解常用排序算法

news2025/1/11 0:05:58

排序

文章目录

  • 排序
  • 直接(插入)排序InsertSort
    • 思想
    • 实现方法:
  • 希尔排序ShellSort(可过OJ)
    • 思想
    • 预排序
    • gap的作用
    • 整体代码
  • 选择排序SelectSort
    • 思想
    • 完整代码
  • 堆排序HeapSort(可过OJ)
    • 思想
      • 大根堆
      • 向下调整
    • 完整代码
  • 冒泡排序BubbleSort
  • 快速排序(快排)QuickSort
    • 缺陷
    • 三数取中法,规避缺陷情况
    • 快排的实现方式
      • 双(左右)指针法
      • 挖坑法
      • 前后指针法
    • 快排的非递归方式
  • 归并排序(外排序)MergeSort (像后序遍历)(可过OJ)
    • 归并排序的内存中(内排序)实现方法
    • 归并排序内排序的非递归
    • 归并排序的外排序实现方法(加餐)
  • 一些小众的排序
    • 计数排序
    • 基数排序
  • 排序算法复杂度及稳定性分析
    • 关于稳定性的理解
  • 递归的缺陷
  • 递归改非递归的方式
  • 递归改非递归为什么
  • 测试排序的接口
  • 测试排序算法的OJ题
  • 一些练习题

直接(插入)排序InsertSort

  1. 元素集合越接近有序,直接插入排序算法的时间效率越高
  2. 时间复杂度:O(N^2)
  3. 空间复杂度:O(1),它是一种稳定的排序算法
  4. 稳定性:稳定

思想

把需要排序的数组按大小依次插入到已经排好序的数组里面去,得到一个新的有序数组。

实现方法:

默认数组只有一个数,因为是一个数,所以一定是有序的,然后把将要排序的数组的第二个数拿过来,再逆序遍历已经排好序的数组,也就是那一个数,跟这个数比较大小,一定是大于小于等于这三个里面的一个,如果是递增排序的话,后面是越来越大,那么这个待排序的数如果比已经拍好的数组的最后一个数大的话,直接插入就可以了。如果待排数比已经排好序数组的最后一个数小,就把排好序的数比较的这个数,用它前面的数覆盖,就相当于数据后移了,再把这个待排的数跟前面的数比较大小,如果还小就再覆盖。

void InsertSort(int* a, int n)
{
	int end;
	int tmp;
	int i = 1;

	while (i < n)
	{
		end = i;
		tmp = a[end];
        // 去找有序数组中哪一个数比tmp小,当然是倒着找了
		while (end > 0 && a[end - 1] > tmp)
		{
			a[end] = a[end - 1];
			end--;
		}
        //  此时end指向的数字是比tmp小的,也可能能找不到比tmp小的,tmp就排到对头上去了
		a[end] = tmp;
		i++;// i是a数组的第i个数,如果再插入一个数,放在队尾就好了,再运行一遍函数就可以了
	}
}

请添加图片描述

不难发现,随着 i 的增大,每次处理数据的数量也在逐增。因为只有一个数据的时候不用比较,所以直接让i从1开始,也就是至少两个数据才开始比较。

每一次都是把将要插入的数据倒着根其他数据比较,找到合适的位置后插入。保持数组一直有序,也不难发现这种方法最坏的情况是逆序,或者接逆序。上面这个样例中当i走到最后的时候,这个1要移动8次。特别浪费时间。

希尔排序ShellSort(可过OJ)

希尔排序法又称缩小增量法。希尔排序法的基本思想是:先选定一个整数,把待排序文件中所有记录分成个组,所有距离为的记录分在同一组内,并对每一组内的记录进行排序。然后,取,重复上述分组和排序的工作。当到达=1时,所有记录在统一组内排好序。

希尔排序的特性总结:

  1. 希尔排序是对直接插入排序的优化。
  2. 当gap > 1时都是预排序,目的是让数组更接近于有序。当gap == 1时,数组已经接近有序的了,这样就会很快。这样整体而言,可以达到优化的效果。我们实现后可以进行性能测试的对比。
  3. 希尔排序的时间复杂度不好计算,需要进行推导,推导出来平均时间复杂度: O(N1.3 —N2
  4. 稳定性:不稳定

思想

就是对直接插入排序的优化,对于直接插入排序来说,这个序列趋近于有序,时间复杂度就越低。反之,这个当序列杂乱的时候,或者是与题目要求的顺序相反,就会非常浪费时间。所以,希尔对直接排序的代码进行了优化,增加了一个预排序的过程。

预排序

设置gap(间距),把一个完整的数组按照gap分组,对于每一个组再单独进行直接排序。通过预处理过程,可以尽量的使数列趋近于有序。当数列趋近于有序的时候,再使用直接排序对整个序列排序,时间会大大降低。当数据足够大的时候才能更好的展现预排序对直接排序的好处。

gap的作用

gap是对数组预排序的隔断的存在,当gap最大的时候,也就是数组本身的大小,是无意义的。但是比n小一点点,就会有很大的作用。

比如,a[]={9,5,3,4,6,8,7,2,1};

对于直接排序来说,9需要移动9次才能从第一位移动到最后一位。

对于希尔排序来说,当gap为3的时候,9会依次与4,7,进行比较,很明显正确顺序是4,7,9。经过一次排序后,数组就是{4,5,3,7,6,8,9,2,1}.

数组稍微有序一点点,然后是第二位为首元素的时候,间距为gap的数就是{5,6,2},排序后是{2,5,6}.放到原数组就是{4,2,3,7,5,8,9,6,1}.

然后是{3,8,1}》》》{1,3,8}。数组就是{4,2,1,7,5,3,9,6,8}.

不难发现,9已经到了队尾了。8也差不多。这些较大的数已经足够靠后了,像是1,2这些数也足够靠前了。

再缩小gap的值,因为已经有序了,所以时间会越来越快。当gap为1的时候就是直接排序了。又因为足够有序,所以时间复杂度趋近于O(N).

算上前面预排序的时间,最快是O(N1.3),最慢也不到O(N2)

整体代码

void ShellSort(int* a, int n)
{
	int end;
	int tmp;
	int gap = n + 1; // gap要以实际的n为准,实际的n还要大个1
	while (gap > 1) // 保证最后一次gap是1,相当于直接排序
	{
		gap = (gap / 3) + 1;
		int i = 0;
		while (i <= n)
		{
			end = i;
			tmp = a[end];
			while (end > 0 && end-gap >= 0 && a[end - gap] > tmp)
			{
				a[end] = a[end - gap]; // 和直接排序结构一样,不同的就是直接排序一直是一个一个的比,希尔排序是隔gap位数比一次
				end -= gap;
			}
			a[end] = tmp;
			i++;
		}
	}
}
void Test()
{
	int a[] = { 3,-1 };
	ShellSort(a, sizeof(a) / sizeof(int) - 1);
	Printarray(a, sizeof(a) / sizeof(int));
}

请添加图片描述

首先是以gap为8/2=4开始排序,和直接排序一样,每次排序的数,都跟前面的数比较,但是希尔排序有了gap这个概念,也就是每次比较的数只能跟这个数前面相隔gap的数比较。这样最后一位的1只需要移动((n/gap)+1)次,就可以到达正确的位置。当前在gap等于1之前,这个数列不一定有序,但是接近有序。

选择排序SelectSort

思想

就是遍历一次数组,找数组的最大值和最小值的下标,然后放在数组的头部和尾部。再缩小数组的大小,头begin后移,尾end前移,当他俩相遇的时候就停止。

所以要一直遍历整个数组,无论这个数组是否是有序的,都要完整的遍历一次数组(从begin到end)。

完整代码

void SelectSort(int* a, int n)
{
	int begin = 0;
	int end = n - 1;
	while (begin < end)
	{
		int min, max;
		min = begin;
		max = begin;
		for (int i = begin + 1; i <= end; i++)
		{
			if (a[i] < a[min])
				min = i;
			if (a[i] > a[max])
				max = i;
		}
		Swap(&a[begin], &a[min]);
		if (max == begin) // 修正max的位置
			max = min;
		Swap(&a[end], &a[max]);
		begin++;
		end--;
	}
}

请添加图片描述

对于第一次循环,最小值是1,最大值是9,所有{1,9}归位,再是{2,8}归位。依次向中间靠拢…

堆排序HeapSort(可过OJ)

堆排序的特性总结:

  1. 堆排序使用堆来选数,效率就高了很多。
  2. 时间复杂度:O(N*logN)
  3. 空间复杂度:O(1)
  4. 稳定性:不稳定

思想

先是建堆。根据需求分为大根堆和小根堆两种情况。

如果是升序,从小到大的顺序,也就是说最小的值在前面。

理清思路后,再好好想想,堆排序只有一次建堆的机会,倘若是建小堆。数组的第一位是最小的数不假。第二次该怎么办呢,是左子节点还是右子节点。如果是右子节点,要不要交换左右子节点的值,后面的节点怎么办?

全是问题。但是逆向思维就好了。比如,大根堆。每次找最大的值,然后把最大的值放在堆底。也就是交换a[0]和a[end]。只需要每次让end前移一次,堆变小了,最二大的数又放到根部了,再交换值。然后向下调整根部。循环即可。

建堆的时间复杂度是O(N),每次向下调整的时间是O(log2N).

差不多就是O(N*logN)了。

大根堆

就是在这个完全二叉树中,根的值,是这颗树最大的值,为了建出这个大根堆,还要保证每个父节点都要大于子节点的值。所以从最后一个父节点开始,逆向向下调整。

向下调整

以当前节点为父节点,判断它的子节点,是否比父节点大,如果子节点比父节点大,就把他们的值交换。再以子节点为父节点,找新的子节点,再调整。

完整代码

// 堆排序 // 建大根堆,先找最大的数,再把最大的数放到最后一位,然后n--,再向下调整
void AdjustDwon(int* a, int n, int root)
{
	int parent = root;
	int child = parent * 2 + 1;
	while (child < n)
	{
		if (child + 1 < n && a[child + 1] > a[child])
			child++;
		if (a[child] > a[parent])
		{
			Swap(&a[child], &a[parent]);
			parent = child;
			child = parent * 2 + 1;
		}
		else
			break;
	}
}
void HeapSort(int* a, int n)
{
	for (int i = (n - 1 - 1) / 2; i >= 0; i--)
	{
		AdjustDwon(a, n, i);
	}
	while (n--)
	{
		Swap(&a[0], &a[n]);
		AdjustDwon(a, n, 0);
	}
}

冒泡排序BubbleSort

冒泡排序的特性总结:

  1. 冒泡排序是一种非常容易理解的排序
  2. 时间复杂度:O(N^2)
  3. 空间复杂度:O(1)
  4. 稳定性:稳定
// 冒泡排序
void BubbleSort(int* a, int n)
{
	while (n)
	{
		for (int i = 0; i < n - 1; i++)
		{
			if (a[i] > a[i + 1])
				Swap(&a[i], &a[i + 1]);
		}
		n--;
	}
}

快速排序(快排)QuickSort

(都无法通过,卡在2222循环的数据了,也就是快排最怕遇到的情况,有序的,只有一个数的数据,不但大量消耗栈空间,处理数据的过程跟冒泡一样,甚至更麻烦)

选最右边的值做key,那么一定要让左边begin先走,这样能保证他们相遇的位置是一个比key大的位置;选最左边的值做key,同理要让end先走。

啊哈算法里面的那个,快排思想。那里的基准数是现在的key。

反正都是在头或尾选基准数key,然后从另一头开始找值。意思就是key选左边,就从右边开始找值。key在右边,就从左边开始找值。

快速排序的特性总结:

  1. 快速排序整体的综合性能和使用场景都是比较好的,所以才敢叫快速排序
  2. 时间复杂度:O(N*logN)
  3. 空间复杂度:O(logN) // 递归的深度
  4. 稳定性:不稳定

缺陷

数列不能是接近有序的,否则时间复杂度是O(N2)。而且会导致栈溢出。因为是递归吗~

三数取中法,规避缺陷情况

防止取key的时候取到最大值或最小值。所以找数组的中位数和最左边和最右边三个数进行比较。选这三个数中间的那个。既不选最小也不选最大。保证排完序之后,div不在两端即可。当然选出来中位数之后,把它和key交换位置。就能避免缺陷了。避免缺陷后,这个排序就是无敌的O(N*logN)了。好吧,也不是无敌的,对于只有一个数的数列,再怎么找也找不到合适的基准数。

int midnomber(int a, int b, int c)
{
	if (a > b)
	{
		if (b > c)
		{
			return b;
		}
		if(c > a)
		{
			return a;
		}
		return c;
	}
	else
	{
		if (c > b)
		{
			return b;
		}
		if (c < a)
		{
			return a;
		}
		return c;
	}
}

就是找三个数的中间数的函数。

但是正常情况下,三数取中法可以规避掉这个区间的最大值或者最小值,选合适的数作基准数。

快排的实现方式

双(左右)指针法

两个指针begin和end。begin从数组的头开始向后找数,end从数组的尾开始向前找数。当begin遇到比基准数(key)大的就停止,否则就++begin(继续向后找);而end从当前数组的尾开始倒着找比基准数小的数,当end指向的数符合条件,进行交换,把begin和end指向的数交换位置。较大的数就移动到数组后面去,较小的数就排到数组前面了。

// 双指针法
int midnomber(int a, int b, int c)
{
	if (a > b)
	{
		if (b > c)
		{
			return b;
		}
		if(c > a)
		{
			return a;
		}
		return c;
	}
	else
	{
		if (c > b)
		{
			return b;
		}
		if (c < a)
		{
			return a;
		}
		return c;
	}
}
void QuickSort(int* a, int left, int right)
{
	if (left >= right) return;
	int midd = midnomber(left, (left + right) / 2, right);
	Swap(&a[left], &a[midd]);
	int key = left;
	int begin = left;
	int end = right;
	while (begin < end)
	{
		while (begin < end && a[end] >= a[key])
		{
			end--;
		}
		while (begin < end && a[begin] <= a[key])
		{
			begin++;
		}
		Swap(&a[begin], &a[end]);
	}
	Swap(&a[key], &a[begin]);
	QuickSort(a, left, begin - 1);
	QuickSort(a, begin + 1, right);
}

请添加图片描述

递归,分治法,也就是大事化小,小事化了的方式。把[0,8]分成[0,4]和[6,8]。再划分[0,1]和[3,4],对于一个数的区间直接忽略,一个数既是最大也是最小,排不了。

在第一次处理数据的时候,针对的是[0,8]这个区间,不难发现,利用三数取中法,我们取6作为基准数,在第一次排好数组中,6的左边都比6小,右边都比6大。

挖坑法

假设基准数都是最左边的那个。

先把基准数那里的数取出来(保存到key),相当于数组的最左边就为空了,也就是挖了一个坑,然后再从最右边往左找比key小的数。同时把这个小的数移到前面那个坑里面去。(虽然数组里面的数并没有真正消失,变成那个坑。但是在某种意义上它就是坑。)。接着再从左往右找比基准数大的数移到那个坑里去。当这两个指针相遇的时候,就把key基准数填进去。

其实和双指针法差不多。

void QuickSortKeng(int* a, int left, int right)
{
	if (left >= right) return;
    
    int midd = midnomber(left, (left + right) / 2, right);
	Swap(&a[left], &a[midd]);
    
	int key = a[left];
	int begin = left;
	int end = right;
	while (begin < end)
	{
		while (begin < end && a[end] >= key)
		{
			end--;
		}
		a[begin] = a[end];
		while (begin < end && a[begin] <= key)
		{
			begin++;
		}
		a[end] = a[begin];
	}
	a[begin] = key;
	QuickSortKeng(a, left, begin - 1);
	QuickSortKeng(a, begin+1,right);
}

最好也加上三数取中法

请添加图片描述

对于挖坑法,原理和前后指针法差不多,不过前后指针法,需要先找到符合条件的两个数,才能完成交换。而挖坑法是一直保持一个坑用来存放数据。在第一次[0,8]这个区间,也是先用三数取中法以6为基准数,把小于6的放左边,大于6的放右边。最后一个坑放基准数。

前后指针法

创建两个指针prev和cur。cur负责遍历数组,prev负责记录比基准数小的数的最右边的下标。

假设基准数是数组最右边的数。

那么cur和prev就从左边开始向右遍历数组,cur从左到右依次遍历数组,prev也是从左到右遍历。定义prev比cur的起始位置靠左一位。

不同的是,cur的作用是识别当前指向的数的大小。如果cur所指的数小于基准数key,说明它的位置正确,cur和prev同时右移一次。

当cur指向的数大于基准数,prev指向这个数的下标。然后cur继续后移,寻找比基准数小的数。当cur向后移动的时候有两种结果:找到一个比基准数小的数,那么交换cur和prev所指向的数,把大的数后移,同时cur和prev右移一次;cur直到遍历完整个数组都没找到比基准数小的数,因为此时prev还指向比基准数大的数,最后再交换基准数和prev。

然后就是划分下次递归的区间。

// 前后指针法
void QuickSortp(int* a, int left, int right)
{
	if (left >= right) return;

	int midd = midnomber(left, (left + right) / 2, right);
	Swap(&a[right], &a[midd]);

	int key = a[right];
	int cur = left;
	int prev = cur;
	while (cur < right)
	{
		if (a[cur] < key && a[prev] < key)
		{
			cur++;
			prev++;
		}
		else if (a[cur] < key && a[prev] > key)
		{
			Swap(&a[prev], &a[cur]);
			prev++;
			cur++;
		}
		else
		{
			cur++;
		}
	}
	Swap(&a[prev], &a[cur]);
	QuickSortp(a, left, prev - 1);
	QuickSortp(a, prev + 1, right);
}

请添加图片描述

这三种快排排序的效果都不太一样,但是消耗的时间都差不多。

有人说,前后指针法里面的两个指针就像两个火车头,cur在前面移动,prev把符合条件的车厢链接到自己这边,prev遇到不符合条件的车厢就等cur找合适的车厢。

快排的非递归方式

因为快排是递归类型的,在使用递归的时候会大量消耗栈空间。所以为了优化这种情况,面试官会要求用非递归的方式,实现快排。

非递归的方式,就是建立一个栈,这个栈来储存每次递归的区间。当栈清空的时候说明所有数据都被排好序了。

整体思路:

建立一个while循环,循环的条件就是栈里有数据,用StackEmpty来判断栈的情况.当然没学c++呢,只能是用手搓的c语言的栈。还要再导入文件到项目里面,这里就先不实现了。

在进入while循环之前把整个数组的左右下标入栈。然后进入循环。

循环:先从栈里面获取数组的下标,然后调用一次快排,这个快排的返回值是中间值。然后是入栈操作,如果像先处理左区间,就先入右区间。因为栈是后进先出。在入栈的时候,要分情况,可以是建立一个结构体,这个结构体就是存区间的下标。或者不创建结构体,直接把区间的下标存进去。这时候还要分情况,是先入区间的左下标还是右下标。因为取的时候是反过来的。

循环的大概流程:判断栈是否为空,不为空就取数据,进行快排得到中间值下标,再入数据进栈。当栈为空就退出

// 伪代码
int QuickSortPart(int*a,int left,int right)
{
    int midd = midnomber(left, (left + right) / 2, right); // 三数取中
    Swap(&a[left], &a[midd]);
    int key = left;
    int begin = left;
    int end = right;
    while (begin < end)
    {
        while (begin < end && a[end] >= a[key])
        {
            end--;
        }
        while (begin < end && a[begin] <= a[key])
        {
            begin++;
        }
        Swap(&a[begin], &a[end]);
    }
    Swap(&a[key], &a[begin]);
    return begin;
}
void QuickSort(int* a, int left, int right)
{
	// 建立一个栈
    Stack st;
    StackInit(&st);
    
    StackPush(&st,right - 1); // 先入的右,就要先取左
    StackPush(&st,left);
    while(!StackEmpty(&st))
    {
        int begin = StackTop(&st); // 先取区间左下标
        StackPop(&st);
        int end = StackTop(&st);
        StackPop(&st);
        int div = QuickSortPart(a, begin, end);
        if((div - 1) - left > 1)
        {
            StackPush(&st,div-1);
            StackPush(&st,left);
		}
        if(right - (div + 1) > 1)
        {
            StackPush(&st,right);
            StackPush(&st,div + 1);
		}
	}
}

归并排序(外排序)MergeSort (像后序遍历)(可过OJ)

上面的排序都叫内排序,指在内存中排序效果更好。

归并排序是外排序,使用在硬盘、文件排序。

归并排序的特性总结:

  1. 归并的缺点在于需要O(N)的空间复杂度,归并排序的思考更多的是解决在磁盘中的外排序问题。(文件与文件之间排序,可以极少的占用内存)
  2. 时间复杂度:O(N*logN)
  3. 空间复杂度:O(N)
  4. 稳定性:稳定

归并排序的内存中(内排序)实现方法

// 归并排序
void MergeSortPart(int* a,int left,int right,int* tmp)
{
	if (left >= right) return;
    // 把目前的数组分成左右两个区间
	int begin1 = left, end1 = (left + right) / 2; 
	int begin2 = ((left + right) / 2) + 1, end2 = right;
	MergeSortPart(a, begin1, end1, tmp); // 一直向左区间递归,直到左区间不可被划分
	MergeSortPart(a, begin2, end2, tmp); // 如果左区间到头了,返回后才是这个递归的开始
	int i = 0; // 作为两个区间比较后插入到tmp数组的位置
	while (begin1 <= end1 && begin2 <= end2)
	{
		if (a[begin1] < a[begin2])
		{
			tmp[left+i] = a[begin1];
			begin1++;
		}
		else
		{
			tmp[left+i] = a[begin2];
			begin2++;
		}
		i++;
	}
	while (begin1 <= end1) // 如果左区间还有剩余的数,再移到tmp数组中
	{
		tmp[left+i] = a[begin1++];
		i++;
	}
	while (begin2 <= end2) // 这里是检查右区间
	{
		tmp[left+i] = a[begin2++];
		i++;
	}
	for (int i = left; i <= right; i++)
	{
		a[i] = tmp[i]; // 再把tmp空间的数据移到原数组
	}
}

void MergeSort(int* a, int n)
{
	int* tmp = (int*)malloc(sizeof(int) * n); // 临时空间来暂存数据
	MergeSortPart(a, 0, n - 1, tmp);
	free(tmp); // 排完序后原数组有序,临时空间就没用了
}

请添加图片描述

不难发现,本应是[0,8]的数组被划分成小份小份的。也就是先一直划分到左区间不可被划分的状态才停止,即[0.1]。然后逐层上返至[0,2]等等。

请添加图片描述

大概的过程就是这样。

请添加图片描述

就像二叉树的后序遍历一样,不过这里先是把区间划到最小的可以排序的区间[0,1],也就是开始往回返的开始,也是处理数据的开始。从这一步,排序才开始。

归并排序内排序的非递归

跟快排递归改非递归的方法一样,都是把区间入栈,再从栈中取数据出来处理。等学了c++再实现。

好吧,还是有必要记一下,因为除了用栈,还有另一种方法实现归并排序的非递归。

要先理清一个思路,在递归的时候,第一次数据处理发生的时候,是在小区间,也就是数据两两一组。还有归并排序的特性,即把两组有序的数据合并。

所以,我们从最小的区间开始合并数组。也就是[0,1] [2,3] ;[4,5] [6,7] ;[8,9].

很明显,我们也可能会遇到奇数的i情况,因此还要修正区间的右下标。

因为是两个区间进行合并,防止一个区间被多次合并,我们还要一个特殊的变量。比如,01和23会合并一次.我们希望下次处理的数据是45和67。在0与4之间隔的是2*gap个数据。这里的gap就是每个区间数据的多少。gap从2开始。每次循环gap都要乘2.当gap大于总数据n的时候结束。

下一次再处理数据的时候,这个区间要变成之前的二倍,2gap=4,[0,1,2,3] [4,5,6,7]; [8,9].。

对于后面89这个区间的数据,它不满足2gap个数据。所以要及时修正一下区间的大小。

归并排序的外排序实现方法(加餐)

这是道面试题:给你10亿个数的文件,正常来说绝大多数的排序都是内排序,也就是需要把数据移到内存中,再排序。很明显,10亿个数比较庞大,无法一次性放到内存中去。所以我们可以把这个十分庞大的数据分割成小份的,具体是多小呢?要看你所使用的电脑最大能在内存中处理的数据。如果你的电脑最大可以一次性排100万位数,那就把10亿个数切成1000份小文件。再切这些小文件的时候,进行小范围的排序。保证每个文件里面的数据是拍好序的,可以用快排排序。然后写到文件里面。完成切割之后。

再用归并排序的外排序,可以是把相邻两个文件排序放到新文件,再把两个新文件合并。一直到最后一个。

void MergeSortFile()
{
    // 打开大文件
    
    // 读取大文件的前100万个数据,放到内存中排序,再写到子文件1中。
    
    // 一直到大文件全部分割完毕
    
    // 再把子文件1和2合并到12.3和4合并到34……
    
    // 因为每个子文件都是有序的,所以可以用归并排序进行外排序
    
}

比较的困难的是给子文件取名,还有子文件合并的时候,子文件名称的获取

但是据说c++也有专门的库,先不实现了,把思路写一下。。。

一些小众的排序

计数排序

就是类似之前学的桶排序(虽然不是真正意义上的桶排序),但是这个排序在某些条件下也很快。

条件:数量足够大且特别集中。

意思就是给你一堆数,这些数都在一个比较小的范围里面,这个范围就是最大的数减去最小的数的差值rang。

然后去遍历这些数,把最小的数放在0的位置,最大的数放在rang的位置。

遍历的时候,让得到的数减去最小数,再放到新数组里面去,这个新数组就是统计每个数出现的次数。

遍历完原数组之后,再逆向写到原数组里面,不过这次就是按顺序写进去了。(写到原数组的时候再把最小值加上,复原)

如果原数组是N个数

那么时间复杂度就是O(MAX(N,rang)) (N和rang较大的那个)

空间复杂度是O(rang)

基数排序

但是真正的桶排序是按照位数的大小分类的,比如是三位数,放进一个桶,两位数就放另外一个桶。

排序算法复杂度及稳定性分析

请添加图片描述

这个表格不要背,要理解。

关于稳定性的理解

数组中相同值,排完序相对顺序可以做到不变就是稳定的否则就不稳定

递归的缺陷

因为递归是在栈上进行的,递归可以以大化小。但是递归再继续往小里划分的时候,栈上堆积的函数栈帧太多了。会爆掉,所以,还可以在函数里面加一个条件,当这个区间不到10个数的时候,就把这个区间交给直接排序。

递归改非递归的方式

  1. 把递归的过程改成循环,比如斐波那契数列求解,当然也仅限于比较简单的递归过程。
  2. 用栈模拟数据存储

递归改非递归为什么

  1. 提高效率 因为递归建立栈帧是有消耗的,虽然现代计算机,已经可以忽略这个问题了
  2. 因为递归是需要建立函数栈帧的,消耗的是栈空间,而且对于系统而言,栈空间都是M级的,也就是按MB来算的;对于非递归来说,数据存储在堆上,堆的空间是G级的,也就是GB。相比之下,还是堆上储存更好。

测试排序的接口

// 排序实现的接口
// 插入排序
void InsertSort(int* a, int n);
// 希尔排序
void ShellSort(int* a, int n);
// 选择排序
void SelectSort(int* a, int n);
// 堆排序
void AdjustDwon(int* a, int n, int root);
void HeapSort(int* a, int n);
// 冒泡排序
void BubbleSort(int* a, int n);
// 快速排序
void QuickSort(int* a, int left, int right);
// 归并排序
void MergeSort(int* a, int n);
// 测试排序的性能对比
void TestOP()
{
 srand(time(0));
 const int N = 100000;
 int* a1 = (int*)malloc(sizeof(int)*N);
 int* a2 = (int*)malloc(sizeof(int)*N);
 int* a3 = (int*)malloc(sizeof(int)*N);
 int* a4 = (int*)malloc(sizeof(int)*N);
 int* a5 = (int*)malloc(sizeof(int)*N);
 int* a6 = (int*)malloc(sizeof(int)*N);
 for (int i = 0; i < N; ++i)
 {
 a1[i] = rand();
 a2[i] = a1[i];
 a3[i] = a1[i];
 a4[i] = a1[i];
 a5[i] = a1[i];
 a6[i] = a1[i];
 }
 int begin1 = clock();// 获取程序运行此处的时间,单位:毫秒 // 头文件<time.h>
 InsertSort(a1, N);
 int end1 = clock(); // 时间之差就是该排序函数所用时间
 int begin2 = clock();
 ShellSort(a2, N);
 int end2 = clock();
 int begin3 = clock();
 SelectSort(a3, N);
 int end3 = clock();
 int begin4 = clock();
 HeapSort(a4, N);
 int end4 = clock();
 int begin5 = clock();
 QuickSort(a5, 0, N-1);
 int end5 = clock();
int begin6 = clock();
 MergeSort(a6, N);
 int end6 = clock();
 printf("InsertSort:%d\n", end1 - begin1);
 printf("ShellSort:%d\n", end2 - begin2);
 printf("SelectSort:%d\n", end3 - begin3);
 printf("HeapSort:%d\n", end4 - begin4);
 printf("QuickSort:%d\n", end5 - begin5);
 printf("MergeSort:%d\n", end6 - begin6);
 free(a1);
 free(a2);
 free(a3);
 free(a4);
 free(a5);
 free(a6);
}

测试排序算法的OJ题

https://leetcode-cn.com/problems/sort-an-array/

一些练习题

  1. 快速排序算法是基于( )的一个排序算法。
    A分治法
    B贪心法
    C递归法
    D动态规划法
    2.对记录(54,38,96,23,15,72,60,45,83)进行从小到大的直接插入排序时,当把第8个记录45
    插入到有序表时,为找到插入位置需比较( )次?(采用从后往前比较)
    A 3
    B 4
    C 5
    D 6
    3.以下排序方式中占用O(n)辅助存储空间的是
    A 简单排序
    B 快速排序
    C 堆排序
    D 归并排序
    4.下列排序算法中稳定且时间复杂度为O(n2)的是( )
    A 快速排序
    B 冒泡排序
    C 直接选择排序
    D 归并排序
    5.关于排序,下面说法不正确的是
    A 快排时间复杂度为O(N*logN),空间复杂度为O(logN)
    B 归并排序是一种稳定的排序,堆排序和快排均不稳定
    C 序列基本有序时,快排退化成冒泡排序,直接插入排序最快
    D 归并排序空间复杂度为O(N), 堆排序空间复杂度的为O(logN)
    6.下列排序法中,最坏情况下时间复杂度最小的是( )
    A 堆排序
    B 快速排序
    C 希尔排序
    D 冒泡排序
    7.设一组初始记录关键字序列为(65,56,72,99,86,25,34,66),则以第一个关键字65为基准而得到
    的一趟快速排序结果是()
    A 34,56,25,65,86,99,72,66
    B 25,34,56,65,99,86,72,66
    C 34,56,25,65,66,99,86,72
    D 34,56,25,65,99,86,72,66

答案:
1.A 2.C 3.D 4.B 5.D 6.A 7.A

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1835411.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

Autodesk Inventor 机械三维设计软件下载安装,Inventor 专业的三维制图软件

Inventor&#xff0c;它的一大亮点在于能够将三维尺寸、标注以及尺寸公差直接融入三维模型中&#xff0c;使得这些关键信息能够无缝对接下游应用&#xff0c;极大地提升了设计流程中的连贯性和一致性。 谈及Inventor的尺寸公差功能&#xff0c;更是让人赞不绝口。在复杂的设计过…

测试:设计测试用例

文章目录 概念设计正交法判定表法 本篇总结的是测试用例的概念和设计方法 概念 测试用例是为了实施测试而向被测试的系统提供的一组集合&#xff0c;这个集合中包含的内容有测试环境&#xff0c;操作步骤&#xff0c;测试数据&#xff0c;预期结果等要素 在测试用例的设计中…

第 54 期:MySQL Too many open files 报错

社区王牌专栏《一问一实验&#xff1a;AI 版》全新改版归来&#xff0c;得到了新老读者们的关注。其中不乏对 ChatDBA 感兴趣的读者前来咨询&#xff0c;表达了想试用体验 ChatDBA 的意愿&#xff0c;对此我们表示感谢 &#x1f91f;。 目前&#xff0c;ChatDBA 还在最后的准备…

【差分数组】2772. 使数组中的所有元素都等于零

本文涉及知识点 差分数组 LeetCode2772. 使数组中的所有元素都等于零 给你一个下标从 0 开始的整数数组 nums 和一个正整数 k 。 你可以对数组执行下述操作 任意次 &#xff1a; 从数组中选出长度为 k 的 任一 子数组&#xff0c;并将子数组中每个元素都 减去 1 。 如果你可…

[dataworks]从mysql导入数据

一、新建离线同步 在ods的数据集成下点新建-->离线同步 1、起名imp_t_ods_uc_cst_terminal_dtl_df 前缀imp是import的缩写 t代表trade即MySQL的交易库(trade)的简写 ods即导入到ods层 uc_cst_terminal_dt为MySQL对应的表名 df为日全量导入&#xff08;di为日增量导入&…

Profibus协议转Modbus协议网关模块帮助PLC实现智能激光设备通讯

一、前言 Profibus转Modbus网关&#xff08;XD-MDPB100&#xff09;是一种工业通信协议转换设备&#xff0c;用于实现Profibus协议与Modbus协议之间的转换。Profibus转Modbus网关在工业自动化系统中具有广泛的应用&#xff0c;它解决了不同协议设备之间的通信问题。本文将深入…

半监督医学图像分割:基于对抗一致性学习和动态卷积网络的方法| 文献速递-深度学习结合医疗影像疾病诊断与病灶分割

Title 题目 Semi-Supervised Medical Image Segmentation Using Adversarial Consistency Learning and Dynamic Convolution Network 半监督医学图像分割&#xff1a;基于对抗一致性学习和动态卷积网络的方法 01 文献速递介绍 医学图像分割在计算辅助诊断和治疗研究中扮演…

M41T00串行实时时钟-国产兼容RS4C1339

RS4C1340是一种实时时钟&#xff08;RTC&#xff09;/日历&#xff0c;与ST M41T00引脚兼容&#xff0c;功能等效&#xff0c;包括软件时钟校准。该器件还提供VBAT引脚上的涓流充电能力、较低的计时电压和振荡器STOP标志。寄存器映射的块访问与ST设备相同。涓流充电器和标志需要…

HarmonyOS 页面路由(Router)

1. HarmonyOS页面路由(Router) 页面路由指在应用程序中实现不同页面之间的跳转和数据传递。HarmonyOS提供了Router模块&#xff0c;通过不同的url地址&#xff0c;可以方便地进行页面路由&#xff0c;轻松地访问不同的页面。本文将从页面跳转、页面返回和页面返回前增加一个询问…

LeetCode刷题之HOT100之单词拆分

上午把docker基础学完了。下午来了闲的无聊&#xff0c;做一题先。 1、题目描述 2、逻辑分析 这个问题是一个典型的动态规划问题&#xff0c;我们可以使用一个布尔数组 dp 来记录字符串 s 的前缀是否可以被拆分成字典中的单词。具体地&#xff0c;dp[i] 表示字符串 s 的前 i …

Odrivegui 、odrivetool运行时的几个问题(windows)

ODrivetool 遇到的几个问题 错误信息 Traceback (most recent call last): File “c:\Users\hpf\Desktop\import matplotlib.py”, line 1, in import matplotlib.pyplot as plt File “C:\Users\hpf\AppData\Local\Programs\Python\Python39\lib\site-packages\matplotlib_…

【STM32】使用标准库点亮LED

1.硬件设计 LED1的阴极接到了PC13引脚上&#xff0c;我们控制PC13引脚的电平输出状态&#xff0c;即可控制LED1的亮灭。 2.编程要点 使能GPIO端口时钟&#xff1b;初始化GPIO目标引脚为推挽输出模式&#xff1b;编写简单测试程序&#xff0c;控制GPIO引脚输出高、低电平。 查…

数据驱动决策:工单统计工具如何赋能企业精准运营

在当今这个数字化飞速发展的时代&#xff0c;企业对于内部运营效率的追求已经达到了前所未有的高度。你是否曾为了繁杂的工单统计管理而头疼不已&#xff1f;是否曾因为无法准确进行工单统计数据而错失商机&#xff1f;今天&#xff0c;我将向你展示一款革命性的工单统计工具&a…

Python基础教程——20个让人眼前一亮的逻辑妙用!

文末免费赠精品编程资料~~ Python不仅仅是一种编程语言&#xff0c;它还是解决问题的艺术&#xff0c;充满了让人拍案叫绝的“小巧思”。通过这15个小技巧&#xff0c;你不仅能提升编程技能&#xff0c;还能让你的代码更加优雅、高效。让我们一探究竟吧&#xff01; 1. 列表推…

Thinkphp校园新闻发布系统源码 毕业设计项目实例

Thinkphp校园新闻发布系统源码 毕业设计项目实例 校园新闻发布系统模块&#xff1a; 用户模块&#xff1a;注册&#xff0c;登陆&#xff0c;查看个人信息&#xff0c;修改个人信息&#xff0c;站内搜索&#xff0c;新闻浏览等功能&#xff0c; 后台管理员模块&#xff1a;会员…

挖矿宝藏之开发者模式

目录 一、开发者模式简介 二、启动方式 三、元素&#xff08;Elements&#xff09; 四、控制台&#xff08;Console&#xff09; 五、来源&#xff08;Sources&#xff09; 六、网络&#xff08;Network&#xff09; 七、性能&#xff08;Performance&#xff09; 八、…

谷粒商城实战(043集群学习-mysql集群-分库分表)

Java项目《谷粒商城》架构师级Java项目实战&#xff0c;对标阿里P6-P7&#xff0c;全网最强 总时长 104:45:00 共408P 此文章包含第364p-第p365的内容 分库分表 这种基本无人用 shardingSphere shard&#xff08;碎片&#xff09; sphere &#xff08;球&#xff09; sh…

基于Spring Boot+VUE论坛管理系统

1前台首页功能模块 论坛管理系统&#xff0c;在系统首页可以查看首页、公告、热门帖子、论坛新天地、新闻资讯、留言反馈、个人中心、后台管理、客服中心等内容&#xff0c;如图1所示。 图1前台首页功能界面图 用户登录、用户注册&#xff0c;在注册页面可以填写账号、密码、昵…

手写一个JSON可视化工具

前言 JSON 平时大家都会用到&#xff0c;都不陌生&#xff0c;今天就一起来实现一个 JSON 的可视化工具。 大概长成下面的样子&#xff1a; 树展示 相比于现有的一些 JSON 格式化工具&#xff0c;我们今天制作的这个小工具会把 JSON 转为树去表示。其中&#xff1a; 橙色标…

生命在于学习——Python人工智能原理(3.5)

三、深度学习 9、常见神经网络 常见的神经网络有卷积神经网络&#xff08;AlexNet、VGGNet&#xff09;、循环神经网络&#xff08;RNN&#xff09; 长短时记忆网络&#xff08;LSTM&#xff09;。 &#xff08;1&#xff09;AlexNet AlexNet于2012年由Hinton学生Alex提出&a…