Hazelcast 分布式缓存 在Seatunnel中的使用

news2024/11/23 22:40:00

1、背景

最近在调研seatunnel的时候,发现新版的seatunnel提供了一个web服务,可以用于图形化的创建数据同步任务,然后管理任务。这里面有个日志模块,可以查看任务的执行状态。其中有个取读数据条数和同步数据条数。很好奇这个数据是怎么来的。跟踪源码发现Hazelcast。所以对Hazelcast进行了研究。

2、Hazelcast是什么

Hazelcast是一个开源的分布式内存数据网格(In-Memory Data Grid,简称IMDG)解决方案,主要用于分布式计算和缓存

  • 分布式数据结构:Hazelcast提供了一系列分布式数据结构,如Map、List、Set、Queue等,可以在集群中进行分布式存储和访问。
  • 缓存:Hazelcast提供了分布式缓存功能,可以将数据存储在内存中,以提供快速的访问速度。它支持多种缓存策略,如LRU(Least Recently Used)、LFU(Least Frequently Used)和TTL(Time to Live)等。
  • 分布式计算:Hazelcast支持将计算任务分布到集群中的多个节点上进行并行处理,提高应用程序的处理能力。
  • 高可靠性:Hazelcast使用分布式复制和故障转移机制,确保数据的可靠性和高可用性。它具有自动故障检测和恢复机制,可以在节点故障时自动迁移数据和任务。
  • 扩展性:Hazelcast可以方便地进行水平扩展,通过添加更多的节点来增加集群的处理能力。它支持动态添加和移除节点,而无需停止应用程序。
  • 集成性:Hazelcast提供了与各种应用程序和框架的集成,如Spring、Hibernate、JCache等。它还支持与其他分布式系统的集成,如Apache Kafka、Apache Ignite等。
  • 多语言支持:Hazelcast提供了对多种编程语言的支持,包括Java、C#、C++、Python和Node.js等

3、应用场景

  • 缓存:Hazelcast可以作为高性能的分布式缓存解决方案,用于缓存应用程序中的热点数据。
  • 分布式计算:Hazelcast提供了分布式计算框架,可以将计算任务分布到集群中的多个节点上进行并行处理,适用于金融、电信、电子商务等行业。
  • 实时数据处理:Hazelcast可以处理实时数据流,支持数据的实时处理和分析,适用于构建实时应用,如实时监控系统、实时推荐系统等。
  • 分布式会话管理:Hazelcast可以用于管理分布式会话,实现会话的共享和负载均衡。
  • 分布式数据存储:Hazelcast可以作为分布式数据存储解决方案,用于在多个节点间共享数据。

4、与Redis对比

可以看到Hazelcast可以理解为一个NoSQL,那就不得不说我们用的最多的Redis了。两者都提供了丰富的数据接口,比如map、list等等。那为什么不直接用Redis呢。我理解有下边几个方面的原因:

  1. 使用Redis需要额外的环境搭建,而Hazelcast如果使用内嵌的方式,则不需要额外的组件引入,做到了开箱即用。
  2. Hazelcast用的是应用服务器自身的内存,扩展性强,不需要外部内存(有点类似Caffeine)。
  3. Hazelcast对过期时间的支持没有Redis那么灵活。
  4. Hazelcast可以进行分布式计算。我们将数据存入到多个节点,通过分布式计算的api,从多个节点上读取数据,然后计算并返回。这也算是相较Redis的一个优势。
  5. Redis可以供多个应用使用共享数据,与应用解耦。Hazelcast一般使用需要嵌入应用。

如果不考虑分布式计算等场景,完全可以看那个方便。如果公司没有基础架构,并且是自己业务线的产品。那完全可以使用Hazelcast。免去了Redis的搭建、运维、管理等环境。否则还是老老实实的用Redis吧。

但是如果存在实时流式处理,那么使用Hazelcast的分布式特性是个不错的选择。比如咱们做一个监控系统,需要处理很多业务系统的数据,总不能单纯在Redis或者Mysql或者单机内存中处理吧。可以考虑试试Hazelcast。

5、怎么用

上边说了一堆的理论,说到底怎么用呢,这里以SpringBoot嵌入式为例。

  1. maven中添加依赖
    <dependency>  
         <groupId>com.hazelcast</groupId>  
         <artifactId>hazelcast</artifactId>  
         <version>你的Hazelcast版本号</version>  
    </dependency>  
      
    <!-- Hazelcast Spring Boot 集成(如果需要) -->  
    <dependency>  
        <groupId>com.hazelcast</groupId>  
        <artifactId>hazelcast-spring-boot</artifactId>  
        <version>你的Hazelcast Spring Boot集成版本号</version>  
    </dependency> 
  2. 代码
    import com.hazelcast.core.HazelcastInstance;  
    import com.hazelcast.map.IMap;  
    import org.springframework.beans.factory.annotation.Autowired;  
    import org.springframework.stereotype.Component;  
      
    @Component  
    public class HazelcastService {  
      
        @Autowired  
        private HazelcastInstance hazelcastInstance;  
      
        public void putData() {  
            IMap<String, String> map = hazelcastInstance.getMap("my-map");  
            map.put("key1", "value1");  
        }  
      
        public String getData(String key) {  
            IMap<String, String> map = hazelcastInstance.getMap("my-map");  
            return map.get(key);  
        }  
    }
  3. 启动成功
    分别启动两个服务,可以看到有两个Hazelcast节点组成的集群

6、源码

源码我想从两个方面去看

1、seatunnel-web提供的查看监控

  • 找到查看日志接口
@RequestMapping("/seatunnel/api/v1/task")
@RestController
public class TaskInstanceController {

    @Autowired ITaskInstanceService<SeaTunnelJobInstanceDto> taskInstanceService;

    @GetMapping("/jobMetrics")
    @ApiOperation(value = "get the jobMetrics list ", httpMethod = "GET")
    public Result<PageInfo<SeaTunnelJobInstanceDto>> getTaskInstanceList(
            @RequestAttribute(name = "userId") Integer userId,
            @RequestParam(name = "jobDefineName", required = false) String jobDefineName,
            @RequestParam(name = "executorName", required = false) String executorName,
            @RequestParam(name = "stateType", required = false) String stateType,
            @RequestParam(name = "startDate", required = false) String startTime,
            @RequestParam(name = "endDate", required = false) String endTime,
            @RequestParam("syncTaskType") String syncTaskType,
            @RequestParam("pageNo") Integer pageNo,
            @RequestParam("pageSize") Integer pageSize) {
        return taskInstanceService.getSyncTaskInstancePaging(
                userId,
                jobDefineName,
                executorName,
                stateType,
                startTime,
                endTime,
                syncTaskType,
                pageNo,
                pageSize);
    }
}
  • 进入getSyncTaskInstancePaging方法
public Result<PageInfo<SeaTunnelJobInstanceDto>> getSyncTaskInstancePaging(
            Integer userId,
            String jobDefineName,
            String executorName,
            String stateType,
            String startTime,
            String endTime,
            String syncTaskType,
            Integer pageNo,
            Integer pageSize) {
        JobDefinition jobDefinition = null;
        IPage<SeaTunnelJobInstanceDto> jobInstanceIPage;
        if (jobDefineName != null) {
            jobDefinition = jobDefinitionDao.getJobByName(jobDefineName);
        }

        Result<PageInfo<SeaTunnelJobInstanceDto>> result = new Result<>();
        PageInfo<SeaTunnelJobInstanceDto> pageInfo = new PageInfo<>(pageNo, pageSize);
        result.setData(pageInfo);
        baseService.putMsg(result, Status.SUCCESS);

        Date startDate = dateConverter(startTime);
        Date endDate = dateConverter(endTime);

        if (jobDefinition != null) {
            jobInstanceIPage =
                    jobInstanceDao.queryJobInstanceListPaging(
                            new Page<>(pageNo, pageSize),
                            startDate,
                            endDate,
                            jobDefinition.getId(),
                            syncTaskType);
        } else {
            jobInstanceIPage =
                    jobInstanceDao.queryJobInstanceListPaging(
                            new Page<>(pageNo, pageSize), startDate, endDate, null, syncTaskType);
        }

        List<SeaTunnelJobInstanceDto> records = jobInstanceIPage.getRecords();
        if (CollectionUtils.isEmpty(records)) {
            return result;
        }
        addJobDefineNameToResult(records);
        addRunningTimeToResult(records);
        // 关键代码,上边都是从本地数据库中获取的,这里会去Hazelcast中获取数据,并更新本地数据
        jobPipelineSummaryMetrics(records, syncTaskType, userId);
        pageInfo.setTotal((int) jobInstanceIPage.getTotal());
        pageInfo.setTotalList(records);
        result.setData(pageInfo);
        return result;
    }
  • 进入代码jobPipelineSummaryMetrics(records, syncTaskType, userId);
     
private void jobPipelineSummaryMetrics(
            List<SeaTunnelJobInstanceDto> records, String syncTaskType, Integer userId) {
        try {
            ArrayList<Long> jobInstanceIdList = new ArrayList<>();
            HashMap<Long, Long> jobInstanceIdAndJobEngineIdMap = new HashMap<>();

            for (SeaTunnelJobInstanceDto jobInstance : records) {
                if (jobInstance.getId() != null && jobInstance.getJobEngineId() != null) {
                    jobInstanceIdList.add(jobInstance.getId());
                    jobInstanceIdAndJobEngineIdMap.put(
                            jobInstance.getId(), Long.valueOf(jobInstance.getJobEngineId()));
                }
            }

            Map<Long, JobSummaryMetricsRes> jobSummaryMetrics =
                    // 获取每条日志数据的监控数据
                    jobMetricsService.getALLJobSummaryMetrics(
                            userId,
                            jobInstanceIdAndJobEngineIdMap,
                            jobInstanceIdList,
                            syncTaskType);

            for (SeaTunnelJobInstanceDto taskInstance : records) {
                if (jobSummaryMetrics.get(taskInstance.getId()) != null) {
                    taskInstance.setWriteRowCount(
                            jobSummaryMetrics.get(taskInstance.getId()).getWriteRowCount());
                    taskInstance.setReadRowCount(
                            jobSummaryMetrics.get(taskInstance.getId()).getReadRowCount());
                }
            }
        } catch (Exception e) {
            for (SeaTunnelJobInstanceDto taskInstance : records) {
                log.error(
                        "instance {} {} set instance and engine id error", taskInstance.getId(), e);
            }
        }
    }
  • 进入jobMetricsService.getALLJobSummaryMetrics( userId,jobInstanceIdAndJobEngineIdMap, jobInstanceIdList, syncTaskType);
     
@Override
    public Map<Long, JobSummaryMetricsRes> getALLJobSummaryMetrics(
            @NonNull Integer userId,
            @NonNull Map<Long, Long> jobInstanceIdAndJobEngineIdMap,
            @NonNull List<Long> jobInstanceIdList,
            @NonNull String syncTaskType) {
        log.info("jobInstanceIdAndJobEngineIdMap={}", jobInstanceIdAndJobEngineIdMap);

        funcPermissionCheck(SeatunnelFuncPermissionKeyConstant.JOB_METRICS_SUMMARY, userId);
        List<JobInstance> allJobInstance = jobInstanceDao.getAllJobInstance(jobInstanceIdList);
        if (allJobInstance.isEmpty()) {
            log.warn(
                    "getALLJobSummaryMetrics : allJobInstance is empty, task id list is {}",
                    jobInstanceIdList);
            return new HashMap<>();
        }
        Map<Long, JobSummaryMetricsRes> result = null;
        Map<Long, HashMap<Integer, JobMetrics>> allRunningJobMetricsFromEngine =
                // 从Hazelcast集群节点中获取监控数据
                getAllRunningJobMetricsFromEngine(
                        allJobInstance.get(0).getEngineName(),
                        allJobInstance.get(0).getEngineVersion());
        // 通过不同的方式获取数据

        if (syncTaskType.equals("BATCH")) {

            result =
                    getMatricsListIfTaskTypeIsBatch(
                            allJobInstance,
                            userId,
                            allRunningJobMetricsFromEngine,
                            jobInstanceIdAndJobEngineIdMap);
        } else if (syncTaskType.equals("STREAMING")) {
            result =
                    getMatricsListIfTaskTypeIsStreaming(
                            allJobInstance,
                            userId,
                            allRunningJobMetricsFromEngine,
                            jobInstanceIdAndJobEngineIdMap);
        }

        log.info("result is {}", result == null ? "null" : result.toString());
        return result;
    }
  • 进入方法getAllRunningJobMetricsFromEngine(allJobInstance.get(0).getEngineName(),allJobInstance.get(0).getEngineVersion());
     
private Map<Long, HashMap<Integer, JobMetrics>> getAllRunningJobMetricsFromEngine(
            String engineName, String engineVersion) {
        Engine engine = new Engine(engineName, engineVersion);

        IEngineMetricsExtractor engineMetricsExtractor =
                (new EngineMetricsExtractorFactory(engine)).getEngineMetricsExtractor();
        // 看名字就知道这个是获取任务的监控数据的
        return engineMetricsExtractor.getAllRunningJobMetrics();
    }
  • 进入engineMetricsExtractor.getAllRunningJobMetrics();
     
@Override
    public Map<Long, HashMap<Integer, JobMetrics>> getAllRunningJobMetrics() {
        HashMap<Long, HashMap<Integer, JobMetrics>> allRunningJobMetricsHashMap = new HashMap<>();

        try {
// 是不是很熟悉。seatunnelproxy,一看就是从这里开始真正和Hazelcast交互,获取数据了
            String allJobMetricsContent = seaTunnelEngineProxy.getAllRunningJobMetricsContent();

            if (StringUtils.isEmpty(allJobMetricsContent)) {
                return new HashMap<>();
            }
            JsonNode jsonNode = JsonUtils.stringToJsonNode(allJobMetricsContent);
            Iterator<JsonNode> iterator = jsonNode.iterator();
            while (iterator.hasNext()) {
                LinkedHashMap<Integer, JobMetrics> metricsMap = new LinkedHashMap();
                JsonNode next = iterator.next();

                JsonNode sourceReceivedCount = next.get("metrics").get("SourceReceivedCount");
                Long jobEngineId = 0L;
                if (sourceReceivedCount != null && sourceReceivedCount.isArray()) {
                    for (JsonNode node : sourceReceivedCount) {
                        jobEngineId = node.get("tags").get("jobId").asLong();
                        Integer pipelineId = node.get("tags").get("pipelineId").asInt();
                        JobMetrics currPipelineMetrics =
                                getOrCreatePipelineMetricsMapStatusRunning(metricsMap, pipelineId);
                        currPipelineMetrics.setReadRowCount(
                                currPipelineMetrics.getReadRowCount() + node.get("value").asLong());
                    }
                }

                JsonNode sinkWriteCount = next.get("metrics").get("SinkWriteCount");
                if (sinkWriteCount != null && sinkWriteCount.isArray()) {
                    for (JsonNode node : sinkWriteCount) {
                        jobEngineId = node.get("tags").get("jobId").asLong();
                        Integer pipelineId = node.get("tags").get("pipelineId").asInt();
                        JobMetrics currPipelineMetrics =
                                getOrCreatePipelineMetricsMapStatusRunning(metricsMap, pipelineId);
                        currPipelineMetrics.setWriteRowCount(
                                currPipelineMetrics.getWriteRowCount()
                                        + node.get("value").asLong());
                    }
                }

                JsonNode sinkWriteQPS = next.get("metrics").get("SinkWriteQPS");
                if (sinkWriteQPS != null && sinkWriteQPS.isArray()) {
                    for (JsonNode node : sinkWriteQPS) {
                        Integer pipelineId = node.get("tags").get("pipelineId").asInt();
                        JobMetrics currPipelineMetrics =
                                getOrCreatePipelineMetricsMapStatusRunning(metricsMap, pipelineId);
                        currPipelineMetrics.setWriteQps(
                                currPipelineMetrics.getWriteQps()
                                        + (new Double(node.get("value").asDouble())).longValue());
                    }
                }

                JsonNode sourceReceivedQPS = next.get("metrics").get("SourceReceivedQPS");
                if (sourceReceivedQPS != null && sourceReceivedQPS.isArray()) {
                    for (JsonNode node : sourceReceivedQPS) {
                        Integer pipelineId = node.get("tags").get("pipelineId").asInt();
                        JobMetrics currPipelineMetrics =
                                getOrCreatePipelineMetricsMapStatusRunning(metricsMap, pipelineId);
                        currPipelineMetrics.setReadQps(
                                currPipelineMetrics.getReadQps()
                                        + (new Double(node.get("value").asDouble())).longValue());
                    }
                }

                JsonNode cdcRecordEmitDelay = next.get("metrics").get("CDCRecordEmitDelay");
                if (cdcRecordEmitDelay != null && cdcRecordEmitDelay.isArray()) {
                    Map<Integer, List<Long>> dataMap = new HashMap<>();
                    for (JsonNode node : cdcRecordEmitDelay) {
                        Integer pipelineId = node.get("tags").get("pipelineId").asInt();
                        long value = node.get("value").asLong();
                        dataMap.computeIfAbsent(pipelineId, n -> new ArrayList<>()).add(value);
                    }
                    dataMap.forEach(
                            (key, value) -> {
                                JobMetrics currPipelineMetrics =
                                        getOrCreatePipelineMetricsMapStatusRunning(metricsMap, key);
                                OptionalDouble average =
                                        value.stream().mapToDouble(a -> a).average();
                                currPipelineMetrics.setRecordDelay(
                                        Double.valueOf(
                                                        average.isPresent()
                                                                ? average.getAsDouble()
                                                                : 0)
                                                .longValue());
                            });
                }

                log.info("jobEngineId={},metricsMap={}", jobEngineId, metricsMap);

                allRunningJobMetricsHashMap.put(jobEngineId, metricsMap);
            }

        } catch (Exception e) {
            e.printStackTrace();
        }
        return allRunningJobMetricsHashMap;
    }
  • 到这里如果有实际操作过seatunnel-web界面的同学们肯定知道,这个基本就已经触及监控数据的来源了。
  • 进入seaTunnelEngineProxy.getAllRunningJobMetricsContent();
     
public String getAllRunningJobMetricsContent() {

        SeaTunnelClient seaTunnelClient = new SeaTunnelClient(clientConfig);
        try {
            return seaTunnelClient.getJobClient().getRunningJobMetrics();
        } finally {
            seaTunnelClient.close();
        }
    }
  • 代码很简单,没啥说的继续跟踪
     
public String getRunningJobMetrics() {
        return (String)this.hazelcastClient.requestOnMasterAndDecodeResponse(SeaTunnelGetRunningJobMetricsCodec.encodeRequest(), SeaTunnelGetRunningJobMetricsCodec::decodeResponse);
    }
  • hazelcastClient,是不是眼熟。是的,seatunnel对hazelcast的调用,封装了很深。马上就胜利了,继续跟代码
     
public <S> S requestOnMasterAndDecodeResponse(@NonNull ClientMessage request, @NonNull Function<ClientMessage, Object> decoder) {
        if (request == null) {
            throw new NullPointerException("request is marked non-null but is null");
        } else if (decoder == null) {
            throw new NullPointerException("decoder is marked non-null but is null");
        } else {
            UUID masterUuid = this.hazelcastClient.getClientClusterService().getMasterMember().getUuid();
            return this.requestAndDecodeResponse(masterUuid, request, decoder);
        }
    }
  • 获取到我们要从那个hazelcast节点获取数据的信息,然后去调用
     
public <S> S requestAndDecodeResponse(@NonNull UUID uuid, @NonNull ClientMessage request, @NonNull Function<ClientMessage, Object> decoder) {
        if (uuid == null) {
            throw new NullPointerException("uuid is marked non-null but is null");
        } else if (request == null) {
            throw new NullPointerException("request is marked non-null but is null");
        } else if (decoder == null) {
            throw new NullPointerException("decoder is marked non-null but is null");
        } else {
            ClientInvocation invocation = new ClientInvocation(this.hazelcastClient, request, (Object)null, uuid);

            try {
                ClientMessage response = (ClientMessage)invocation.invoke().get();
                return this.serializationService.toObject(decoder.apply(response));
            } catch (InterruptedException var6) {
                Thread.currentThread().interrupt();
                return null;
            } catch (Throwable var7) {
                throw ExceptionUtil.rethrow(var7);
            }
        }
    }
  • 着重记忆一下ClientInvocation和ClientMessage。因为在跟踪hazelcase-api的代码的时候,就是用的这里。
  • 在下边就是调用hazelcast的客户端,发送请求,然后get阻塞,直到数据返回。

2、Hazelcast-api

  • hazelcast的api调用,我们以下面这段代码为入口开始看源码。
import com.hazelcast.core.HazelcastInstance;  
import com.hazelcast.map.IMap;  
import org.springframework.beans.factory.annotation.Autowired;  
import org.springframework.stereotype.Component;  
  
@Component  
public class HazelcastService {  
  
    @Autowired  
    private HazelcastInstance hazelcastInstance;  
  
    public void putData() {  
        IMap<String, String> map = hazelcastInstance.getMap("my-map");  
        map.put("key1", "value1");  
    }  
  
    public String getData(String key) {  
        IMap<String, String> map = hazelcastInstance.getMap("my-map");  
        return map.get(key);  
    }  
}
  • 可以看到hazelcast的使用基本和java的数据结构使用一样。所以如果我们要使用hazelcast还是很方便入手的。
  • 进入hazelcast封装的map的put方法
     
@Override
    public V get(@Nonnull Object key) {
        checkNotNull(key, NULL_KEY_IS_NOT_ALLOWED);

        return toObject(getInternal(key));
    }
  • 进入getInternal方法
     
protected Object getInternal(Object key) {
        // TODO: action for read-backup true is not well tested
        Data keyData = toDataWithStrategy(key);
        if (mapConfig.isReadBackupData()) {
            Object fromBackup = readBackupDataOrNull(keyData);
            if (fromBackup != null) {
                return fromBackup;
            }
        }
        MapOperation operation = operationProvider.createGetOperation(name, keyData);
        operation.setThreadId(getThreadId());
        return invokeOperation(keyData, operation);
    }
  • 将参数封装为了hazelcast的map数据结构,并调用操作方法
     
private Object invokeOperation(Data key, MapOperation operation) {
        int partitionId = partitionService.getPartitionId(key);
        operation.setThreadId(getThreadId());
        try {
            Object result;
            if (statisticsEnabled) {
                long startTimeNanos = Timer.nanos();
                Future future = operationService
                        .createInvocationBuilder(SERVICE_NAME, operation, partitionId)
                        .setResultDeserialized(false)
                        .invoke();
                result = future.get();
                incrementOperationStats(operation, localMapStats, startTimeNanos);
            } else {
                Future future = operationService
                        .createInvocationBuilder(SERVICE_NAME, operation, partitionId)
                        .setResultDeserialized(false)
                        .invoke();
                result = future.get();
            }
            return result;
        } catch (Throwable t) {
            throw rethrow(t);
        }
    }
  • 执行方法,并返回了一个InvocationFuture,这个InvocationFuture对象是集成了CompletableFuture的一个future,所以如果需要,也可以使用多线程编排,执行复杂查询的。
     
@Override
    public InvocationFuture invoke() {
        op.setServiceName(serviceName);
        Invocation invocation;
        if (target == null) {
            op.setPartitionId(partitionId).setReplicaIndex(replicaIndex);
            invocation = new PartitionInvocation(
                    context, op, doneCallback, tryCount, tryPauseMillis, callTimeout, resultDeserialized,
                    failOnIndeterminateOperationState, connectionManager);
        } else {
            invocation = new TargetInvocation(
                    context, op, target, doneCallback, tryCount, tryPauseMillis,
                    callTimeout, resultDeserialized, connectionManager);
        }

        return async
                ? invocation.invokeAsync()
                : invocation.invoke();
    }
  • 可以看到真正去执行的是不同类型的Invocation。并且可以根据是同步还是异步,调用不同的执行方法,我们直接看invoke方法。
     
private void invoke0(boolean isAsync) {
        if (invokeCount > 0) {
            throw new IllegalStateException("This invocation is already in progress");
        } else if (isActive()) {
            throw new IllegalStateException(
                    "Attempt to reuse the same operation in multiple invocations. Operation is " + op);
        }

        try {
            setCallTimeout(op, callTimeoutMillis);
            setCallerAddress(op, context.thisAddress);
            op.setNodeEngine(context.nodeEngine);

            boolean isAllowed = context.operationExecutor.isInvocationAllowed(op, isAsync);
            if (!isAllowed && !isMigrationOperation(op)) {
                throw new IllegalThreadStateException(Thread.currentThread() + " cannot make remote call: " + op);
            }
            doInvoke(isAsync);
        } catch (Exception e) {
            handleInvocationException(e);
        }
    }
  • 继续进入doInvoke方法
     
private void doInvoke(boolean isAsync) {
        if (!engineActive()) {
            return;
        }

        invokeCount++;

        setInvocationTime(op, context.clusterClock.getClusterTime());

        // We'll initialize the invocation before registering it. Invocation monitor iterates over
        // registered invocations and it must observe completely initialized invocations.
        Exception initializationFailure = null;
        try {
            initInvocationTarget();
        } catch (Exception e) {
            // We'll keep initialization failure and notify invocation with this failure
            // after invocation is registered to the invocation registry.
            initializationFailure = e;
        }

        if (!context.invocationRegistry.register(this)) {
            return;
        }

        if (initializationFailure != null) {
            notifyError(initializationFailure);
            return;
        }

        if (isLocal()) {
            doInvokeLocal(isAsync);
        } else {
            doInvokeRemote();
        }
    }
  • 如果是本地调用,进入doInvokeLocal。如果是远程调用进入doInvokeRemote。如果是springboot直接引入的情况下,进入本地调用
  • 调用远程的hazelcast集群的。进入doInvokeRemote方法。
  • 例子中是本地调用,所以进入doInvokeLocal,这里的代码本文就不继续跟进去,如果感兴趣可以debug进去看看,大概的逻辑是调用execute方法,然后将MapOperation(Operation对象)放到一个队列中,线程池异步执行,我们着重看下MapOperation。
     
public abstract class MapOperation extends AbstractNamedOperation
        implements IdentifiedDataSerializable, ServiceNamespaceAware {

    private static final boolean ASSERTION_ENABLED = MapOperation.class.desiredAssertionStatus();

    protected transient MapService mapService;
    protected transient RecordStore<Record> recordStore;
    protected transient MapContainer mapContainer;
    protected transient MapServiceContext mapServiceContext;
    protected transient MapEventPublisher mapEventPublisher;

    protected transient boolean createRecordStoreOnDemand = true;
    protected transient boolean disposeDeferredBlocks = true;

    private transient boolean canPublishWanEvent;

    public MapOperation() {
    }

    public MapOperation(String name) {
        this.name = name;
    }

    @Override
    public final void beforeRun() throws Exception {
        super.beforeRun();

        mapService = getService();
        mapServiceContext = mapService.getMapServiceContext();
        mapEventPublisher = mapServiceContext.getMapEventPublisher();

        try {
            recordStore = getRecordStoreOrNull();
            if (recordStore == null) {
                mapContainer = mapServiceContext.getMapContainer(name);
            } else {
                mapContainer = recordStore.getMapContainer();
            }
        } catch (Throwable t) {
            disposeDeferredBlocks();
            throw rethrow(t, Exception.class);
        }

        canPublishWanEvent = canPublishWanEvent(mapContainer);

        assertNativeMapOnPartitionThread();

        innerBeforeRun();
    }

    protected void innerBeforeRun() throws Exception {
        if (recordStore != null) {
            recordStore.beforeOperation();
        }
        // Concrete classes can override this method.
    }

    @Override
    public final void run() {
        try {
            runInternal();
        } catch (NativeOutOfMemoryError e) {
            rerunWithForcedEviction();
        }
    }

    protected void runInternal() {
        // Intentionally empty method body.
        // Concrete classes can override this method.
    }

    private void rerunWithForcedEviction() {
        try {
            runWithForcedEvictionStrategies(this);
        } catch (NativeOutOfMemoryError e) {
            disposeDeferredBlocks();
            throw e;
        }
    }

    @Override
    public final void afterRun() throws Exception {
        afterRunInternal();
        disposeDeferredBlocks();
        super.afterRun();
    }

    protected void afterRunInternal() {
        // Intentionally empty method body.
        // Concrete classes can override this method.
    }

    @Override
    public void afterRunFinal() {
        if (recordStore != null) {
            recordStore.afterOperation();
        }
    }

    protected void assertNativeMapOnPartitionThread() {
        if (!ASSERTION_ENABLED) {
            return;
        }

        assert mapContainer.getMapConfig().getInMemoryFormat() != NATIVE
                || getPartitionId() != GENERIC_PARTITION_ID
                : "Native memory backed map operations are not allowed to run on GENERIC_PARTITION_ID";
    }

    ILogger logger() {
        return getLogger();
    }

    protected final CallerProvenance getCallerProvenance() {
        return disableWanReplicationEvent() ? CallerProvenance.WAN : CallerProvenance.NOT_WAN;
    }

    private RecordStore getRecordStoreOrNull() {
        int partitionId = getPartitionId();
        if (partitionId == -1) {
            return null;
        }
        PartitionContainer partitionContainer = mapServiceContext.getPartitionContainer(partitionId);
        if (createRecordStoreOnDemand) {
            return partitionContainer.getRecordStore(name);
        } else {
            return partitionContainer.getExistingRecordStore(name);
        }
    }

    @Override
    public void onExecutionFailure(Throwable e) {
        disposeDeferredBlocks();
        super.onExecutionFailure(e);
    }

    @Override
    public void logError(Throwable e) {
        ILogger logger = getLogger();
        if (e instanceof NativeOutOfMemoryError) {
            Level level = this instanceof BackupOperation ? Level.FINEST : Level.WARNING;
            logger.log(level, "Cannot complete operation! -> " + e.getMessage());
        } else {
            // we need to introduce a proper method to handle operation failures (at the moment
            // this is the only place where we can dispose native memory allocations on failure)
            disposeDeferredBlocks();
            super.logError(e);
        }
    }

    void disposeDeferredBlocks() {
        if (!disposeDeferredBlocks
                || recordStore == null
                || recordStore.getInMemoryFormat() != NATIVE) {
            return;
        }

        recordStore.disposeDeferredBlocks();
    }

    private boolean canPublishWanEvent(MapContainer mapContainer) {
        boolean canPublishWanEvent = mapContainer.isWanReplicationEnabled()
                && !disableWanReplicationEvent();

        if (canPublishWanEvent) {
            mapContainer.getWanReplicationDelegate().doPrepublicationChecks();
        }
        return canPublishWanEvent;
    }

    @Override
    public String getServiceName() {
        return MapService.SERVICE_NAME;
    }

    public boolean isPostProcessing(RecordStore recordStore) {
        MapDataStore mapDataStore = recordStore.getMapDataStore();
        return mapDataStore.isPostProcessingMapStore()
                || !mapContainer.getInterceptorRegistry().getInterceptors().isEmpty();
    }

    public void setThreadId(long threadId) {
        throw new UnsupportedOperationException();
    }

    public long getThreadId() {
        throw new UnsupportedOperationException();
    }

    protected final void invalidateNearCache(List<Data> keys) {
        if (!mapContainer.hasInvalidationListener() || isEmpty(keys)) {
            return;
        }

        Invalidator invalidator = getNearCacheInvalidator();

        for (Data key : keys) {
            invalidator.invalidateKey(key, name, getCallerUuid());
        }
    }

    // TODO: improve here it's possible that client cannot manage to attach listener
    public final void invalidateNearCache(Data key) {
        if (!mapContainer.hasInvalidationListener() || key == null) {
            return;
        }

        Invalidator invalidator = getNearCacheInvalidator();
        invalidator.invalidateKey(key, name, getCallerUuid());
    }

    /**
     * This method helps to add clearing Near Cache event only from
     * one-partition which matches partitionId of the map name.
     */
    protected final void invalidateAllKeysInNearCaches() {
        if (mapContainer.hasInvalidationListener()) {

            int partitionId = getPartitionId();
            Invalidator invalidator = getNearCacheInvalidator();

            if (partitionId == getNodeEngine().getPartitionService().getPartitionId(name)) {
                invalidator.invalidateAllKeys(name, getCallerUuid());
            } else {
                invalidator.forceIncrementSequence(name, getPartitionId());
            }
        }
    }

    private Invalidator getNearCacheInvalidator() {
        MapNearCacheManager mapNearCacheManager = mapServiceContext.getMapNearCacheManager();
        return mapNearCacheManager.getInvalidator();
    }

    protected final void evict(Data justAddedKey) {
        if (mapContainer.getEvictor() == Evictor.NULL_EVICTOR) {
            return;
        }
        recordStore.evictEntries(justAddedKey);
        disposeDeferredBlocks();
    }

    @Override
    public int getFactoryId() {
        return MapDataSerializerHook.F_ID;
    }

    @Override
    public ObjectNamespace getServiceNamespace() {
        MapContainer container = mapContainer;
        if (container == null) {
            MapService service = getService();
            container = service.getMapServiceContext().getMapContainer(name);
        }
        return container.getObjectNamespace();
    }

    // for testing only
    public void setMapService(MapService mapService) {
        this.mapService = mapService;
    }

    // for testing only
    public void setMapContainer(MapContainer mapContainer) {
        this.mapContainer = mapContainer;
    }

    protected final void publishWanUpdate(Data dataKey, Object value) {
        publishWanUpdateInternal(dataKey, value, false);
    }

    private void publishWanUpdateInternal(Data dataKey, Object value, boolean hasLoadProvenance) {
        if (!canPublishWanEvent) {
            return;
        }

        Record<Object> record = recordStore.getRecord(dataKey);
        if (record == null) {
            return;
        }

        Data dataValue = toHeapData(mapServiceContext.toData(value));
        ExpiryMetadata expiryMetadata = recordStore.getExpirySystem().getExpiryMetadata(dataKey);
        WanMapEntryView<Object, Object> entryView = createWanEntryView(
                toHeapData(dataKey), dataValue, record, expiryMetadata,
                getNodeEngine().getSerializationService());

        mapEventPublisher.publishWanUpdate(name, entryView, hasLoadProvenance);
    }

    protected final void publishLoadAsWanUpdate(Data dataKey, Object value) {
        publishWanUpdateInternal(dataKey, value, true);
    }

    protected final void publishWanRemove(@Nonnull Data dataKey) {
        if (!canPublishWanEvent) {
            return;
        }

        mapEventPublisher.publishWanRemove(name, toHeapData(dataKey));
    }

    protected boolean disableWanReplicationEvent() {
        return false;
    }

    protected final TxnReservedCapacityCounter wbqCapacityCounter() {
        return recordStore.getMapDataStore().getTxnReservedCapacityCounter();
    }

    protected final Data getValueOrPostProcessedValue(Record record, Data dataValue) {
        if (!isPostProcessing(recordStore)) {
            return dataValue;
        }
        return mapServiceContext.toData(record.getValue());
    }

    @Override
    public TenantControl getTenantControl() {
        return getNodeEngine().getTenantControlService()
                .getTenantControl(MapService.SERVICE_NAME, name);
    }

    @Override
    public boolean requiresTenantContext() {
        return true;
    }
}
  • 既然要线程异步去执行,所以它肯定要实现run方法,所以找到run方法,进入runInternal。实现方法很多,找到map包相关的类。
     
@Override
    protected void runInternal() {
        Object currentValue = recordStore.get(dataKey, false, getCallerAddress());
        if (noCopyReadAllowed(currentValue)) {
            // in case of a 'remote' call (e.g a client call) we prevent making
            // an on-heap copy of the off-heap data
            result = (Data) currentValue;
        } else {
            // in case of a local call, we do make a copy, so we can safely share
            // it with e.g. near cache invalidation
            result = mapService.getMapServiceContext().toData(currentValue);
        }
    }
  • 这里基本就是获取到hazelcast管理的内存中数据的地方,不再一一debug,一路向下找到代码
     
public V get(Object key) {
        int hash = hashOf(key);
        return segmentFor(hash).get(key, hash);
    }
  • 怎么样,熟悉吧。java的map调用是不是也是这样,先hash找到位置,在获取数据。其实这里的hash和map的hash有一些区别。这是由于hazelcast的架构决定的,如果对原理架构感兴趣可以百度搜一搜,很多。这里大概提一嘴,有一个分片的概念,put的时候会hash到不同的分区(分片)。这也是hazelcast分布式的原理。

7、结语

本文只是介绍了hazelcast的最基本用法,如果按照案例中的使用,完全可以用redis或者本地缓存。但是如果有了更高级(实际中的使用),那么hazelcast的分布式计算特性还是很好用的。源码也只是分析了本地的调用。如果感兴趣其实可以debug跟进去看下远程调用的方式。其实想想本质还是一样,远程调用就需要1、发现节点;2、注册节点;3、网络调用其他节点。而seatunnel的调用就相对来说更高级一些,它进行了一系列的封装。最后也还是网络调用其他节点。然后返回future阻塞等待返回结果,由于是内存级别的,处理特别快。

对了差点忘记一点,一直在说分布式特性。本文只说了单纯作为缓存使用get、put方法。这里大概介绍下分布式api的使用

IExecutorService executorService = hazelcastInstance.getExecutorService("myExecutor");  
Runnable task = () -> {  
    // 这里是任务的逻辑  
    System.out.println("Executing task on " + hazelcastInstance.getCluster().getLocalMember().getAddress());  
};  
Future<Void> future = executorService.submit(task);  
future.get(); // 等待任务完成

这样就可以查询分布式节点上的数据,然后聚合返回。是不是有点像MapReduce。确实,hazelcast也可以使用MapReduce进行复杂运算,想了解的,也可以去搜一搜看看。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1834662.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

React+TS前台项目实战(十一)-- 全局常用组件提示语可复制Link组件封装

文章目录 前言HighLightLink组件1. 功能分析2. 代码详细注释3. 使用方式4. 效果展示 总结 前言 今天这篇讲的这个组件&#xff0c;是一个用于高亮显示文本并添加可选的跳转链接&#xff0c;提示文本&#xff0c;复制文本的 React 组件 HighLightLink组件 1. 功能分析 &#x…

Pyqt QCustomPlot 简介、安装与实用代码示例(一)

目录 简介安装实用代码示例带有填充的简单衰减正弦函数及其红色的指数包络线具有数据点的 sinc 函数、相应的误差条和 2--sigma 置信带几种散点样式的演示展示 QCustomPlot 在设计绘图方面的多功能性 结语 所有文章除特别声明外&#xff0c;均采用 CC BY-NC-SA 4.0 许可协议。转…

基于uni-app和图鸟UI的智慧校园圈子小程序开发实践

摘要&#xff1a; 随着教育信息化和“互联网教育”的快速发展&#xff0c;智慧校园建设已成为推动校园管理现代化、提高教育教学质量的重要手段。本文介绍了基于uni-app和图鸟UI开发的智慧校园圈子小程序&#xff0c;旨在通过一站式服务、个性化定制、数据互通和安全可靠等特点…

outline server 服务搭建到 Ubuntu

安装outline manager到本地电脑 Windows版: https://github.com/Jigsaw-Code/outline-releases/blob/master/manager/Outline-Manager.exe MacOS版 https://github.com/Jigsaw-Code/outline-releases/blob/master/manager/Outline-Manager.dmg 启动outline manager 点击…

Proteus8.13安装及使用

Proteus安装包下载地址 具体安装方法如下&#xff1a; 退出所有杀毒软件,右键以管理员身份运行 如果缺插件安装插件然后点击安装 如果遇到这种需要勾选的都勾选 安装插件完成 安装过程: 安装完成后桌面会自动出现图标 注意这个安装包是免破解的, 安装好以后可以直接使用 打…

使用人工智能帮忙盲人进行环境地图绘制

介绍 据报道&#xff0c;仓鼠、狼、黑猩猩和蝙蝠等智能动物可以学习环境地图&#xff0c;并选择适当的行动路径。 因此&#xff0c;机器人自我定位和绘制环境地图以实现智能行为被认为是非常重要的。 另一方面&#xff0c;如果通过机器学习&#xff08;如神经网络&#xff0…

【scrapy】爬虫,从429状态码说起

许久未爬&#xff0c;发现爬不动了&#xff0c;哈哈哈&#xff0c;记录下这次失败的爬取经历 问题描述 针对这样的一个网站&#xff1a; https://www.farfetch.cn/cn/shopping/women/dresses-1/items.aspx?page1&view96&sort3 需求&#xff1a; 1.需要爬取列表页…

MySQL中的客户端选项(二)

在全局选项文件之后读取此选项文件&#xff0c;但&#xff08;在Unix上&#xff09;在用户选项文件之前读取。如果文件不存在或无法访问&#xff0c;则会发生错误。如果file_name不是绝对路径名&#xff0c;则会相对于当前目录进行解释。 仅使用给定的选项文件。如果文件不存在…

HACH哈希紫外可见光分光光度计维修DR6000

DR3900可见分光光度计内置准双光束光学系统&#xff0c;自动校准波长&#xff0c;该可见光分光光度计预置200多个用户程序&#xff0c;几乎覆盖常规水质参数&#xff0c;彩色触屏搭载中文操作界面&#xff0c;可自动分析检测并存储2000组实验数据&#xff0c;是一款测量准确的可…

《EDA技术》 Quartus图3—4实验报告

目录 一&#xff1a;结构描述方式 1.1创建工程 1.1.1点击New Project Wizard&#xff0c;创建t34工程。 1.1.2设置工程路径和名称&#xff08;t34&#xff09; 1.2设计门电路 1.2.1设计三输入或非门VHDL程序 1.2.2 设计非门VHDL程序 ​编辑 1.2.3 设计二输入或非门VHD…

ubuntu16因swap分区uuid错误启动慢排查

感觉ubuntu16启动特别慢 dmesg查看如下&#xff1a; [ 10.050123] audit: type1400 audit(1718608189.395:11): apparmor"STATUS" operation"profile_load" profile"unconfined" name"webbrowser-app//oxide_helper" pid708 comm&q…

【测试专题】系统测试报告(原件Word)

软件测试报告在软件开发过程中起着至关重要的作用&#xff0c;主要有以下几个主要原因&#xff1a; 1、确保软件质量 2、提供决策支持 3、记录测试过程和结果 4、促进沟通和协作 5、符合标准和法规要求 6、改进测试流程和策略 7、降低风险 软件开发全套资料获取进主页或者本文末…

查询Kafka集群中消费组(group)信息和对应topic的消费情况

个人名片 &#x1f393;作者简介&#xff1a;java领域优质创作者 &#x1f310;个人主页&#xff1a;码农阿豪 &#x1f4de;工作室&#xff1a;新空间代码工作室&#xff08;提供各种软件服务&#xff09; &#x1f48c;个人邮箱&#xff1a;[2435024119qq.com] &#x1f4f1…

一款超好用的国产 Redis 可视化工具,真香!

哈喽&#xff0c;大家好&#xff0c;我是黑板报君&#xff0c;一个资深的软件开发工程师&#xff0c;致力于为大家分享各领域优质开源项目&#xff0c;开发前沿技术以及互联网技术圈动态。 添加图片注释&#xff0c;不超过 140 字&#xff08;可选&#xff09; 日常开发过程中…

VBA学习(5):批量生成小饼图

之前给大家分享了如何用一个函数制作各种常见图表&#xff0c;之后有朋友问&#xff0c;下图中表示精确占比的饼图是怎么批量生成的&#xff1f; 批量生成小饼图有两种常用的方法&#xff0c;一种是用插件&#xff0c;比如Sparklines&#xff1b;另外一种是自己动手丰衣足食&am…

UDS诊断、ECU刷写、OTA升级、Tbox测试、CANoe实操

每天的直播时间&#xff1a; 周一至周五&#xff1a;20&#xff1a;00-23&#xff1a;00 周六与周日&#xff1a;9&#xff1a;00-12&#xff1a;00&#xff0c;14&#xff1a;00-17&#xff1a;00 TBOX 深圳 涉及过T-BOX测试吗Ota升级涉及的台架环境是什么样的&#xff1f;上…

位图法-有效的数独

有效的数独&#xff0c;主要是判断每行每列每宫有无重复元素。 每行每列用二重循环&#xff0c;每宫比较复杂&#xff0c;需要考虑每一宫的坐标与二重循环ij对应关系 行i&#xff0c;每一宫3行&#xff0c;3列 x3*(i/3)j/3 y3*(i%3)j%3

计算机考研|双非计算机专业是考研还是就业?主要看这一点!

去看一看招聘就知道了&#xff0c;看看公司需要的开发或者计算机岗位要求的东西你在本科的时候有没有精通的 如果你发现&#xff1a;哎&#xff1f;看着招聘的要求好像本科多少都接触过&#xff0c;但现在已经忘得差不多了&#xff0c;或者是&#xff0c;哦&#xff0c;我知道…

金蝶云星空程序员开发快速入门

文章目录 一 前言1.1 学习步骤1.2 学习需知 二、学习金蝶*云星空的步骤2.1 下载金蝶*云星空安装到本地2.2 查看官网的学习资料2.3 如何使用C#进行插件开发2.4 sqlserver的表设计以及存储过程2.5 如何使用python进行插件的开发2.6 第三方程序如何调用金蝶*云星空的数据 三 后记 …

移动硬盘数据恢复,6个亲测有效方法公开!

“我的移动硬盘已经用了很久了&#xff0c;最近不知道是怎么回事&#xff0c;里面有部分重要的数据居然不见了。想问问大家有什么方法可以恢复移动硬盘的数据吗&#xff1f;” 在数字时代的浪潮中&#xff0c;移动硬盘已成为我们存储和携带数据的重要工具。从海量的工作文档、珍…