C/C++ Adaline自适应线性神经网络算法详解及源码

news2024/11/24 17:31:31

个人名片
在这里插入图片描述
🎓作者简介:java领域优质创作者
🌐个人主页:码农阿豪
📞工作室:新空间代码工作室(提供各种软件服务)
💌个人邮箱:[2435024119@qq.com]
📱个人微信:15279484656
🌐个人导航网站:www.forff.top
💡座右铭:总有人要赢。为什么不能是我呢?

  • 专栏导航:

码农阿豪系列专栏导航
面试专栏:收集了java相关高频面试题,面试实战总结🍻🎉🖥️
Spring5系列专栏:整理了Spring5重要知识点与实战演练,有案例可直接使用🚀🔧💻
Redis专栏:Redis从零到一学习分享,经验总结,案例实战💐📝💡
全栈系列专栏:海纳百川有容乃大,可能你想要的东西里面都有🤸🌱🚀

标题:C/C++ Adaline自适应线性神经网络算法详解及源码

目录

      • 1. 简介
      • 2. 原理
      • 3. 实现步骤
        • 3.1 初始化权重
        • 3.2 前向传播
        • 3.3 计算误差
        • 3.4 更新权重
        • 3.5 重复步骤2-4
      • 4. 源码示例
      • 5. 总结

1. 简介

Adaline(自适应线性神经元)是一种用于模式分类的线性神经网络。它与感知器类似,但具有一些改进,如使用连续的激活函数和梯度下降算法进行权重调整。本文将介绍Adaline算法的原理、实现步骤以及用C/C++编写的源码。

2. 原理

Adaline的原理类似于感知器,但是输出不是一个离散的值,而是一个连续的值。它的输入与输出之间存在一个线性关系:

[ y = \sum_{i=1}^{n} w_i \cdot x_i ]

其中,( y ) 是输出,( w_i ) 是权重,( x_i ) 是输入。

Adaline的学习算法是基于梯度下降的。它的目标是最小化预测输出与实际输出之间的误差,即最小化成本函数:

[ J(w) = \frac{1}{2} \sum_{i=1}^{n} (target_i - output_i)^2 ]

通过梯度下降法更新权重,使得成本函数逐步减小,最终达到收敛。

3. 实现步骤

3.1 初始化权重

初始化权重 ( w_i ),可以随机初始化或者使用零值初始化。

3.2 前向传播

对于每个输入样本,计算输出 ( y ):

[ y = \sum_{i=1}^{n} w_i \cdot x_i ]

3.3 计算误差

计算预测输出与实际输出之间的误差:

[ error = target - output ]

3.4 更新权重

根据误差使用梯度下降法更新权重:

[ w_i = w_i + \alpha \cdot error \cdot x_i ]

其中,( \alpha ) 是学习率。

3.5 重复步骤2-4

重复执行前向传播、计算误差和更新权重的步骤,直到达到收敛或者达到最大迭代次数。

4. 源码示例

下面是一个使用C/C++编写的简单的Adaline算法示例:

#include <iostream>
#include <vector>

using namespace std;

class Adaline {
private:
    vector<double> weights;
    double learningRate;

public:
    Adaline(int inputSize, double alpha) : learningRate(alpha) {
        // Initialize weights with zeros
        weights.resize(inputSize, 0.0);
    }

    double predict(vector<double>& inputs) {
        double output = 0.0;
        for (int i = 0; i < inputs.size(); ++i) {
            output += weights[i] * inputs[i];
        }
        return output;
    }

    void train(vector<vector<double>>& trainingData, vector<double>& targets, int epochs) {
        for (int epoch = 0; epoch < epochs; ++epoch) {
            for (int i = 0; i < trainingData.size(); ++i) {
                double prediction = predict(trainingData[i]);
                double error = targets[i] - prediction;
                for (int j = 0; j < weights.size(); ++j) {
                    weights[j] += learningRate * error * trainingData[i][j];
                }
            }
        }
    }
};

int main() {
    vector<vector<double>> trainingData = {{0, 0}, {0, 1}, {1, 0}, {1, 1}};
    vector<double> targets = {-1, -1, -1, 1};

    Adaline adaline(2, 0.1);
    adaline.train(trainingData, targets, 1000);

    // Test the trained model
    for (int i = 0; i < trainingData.size(); ++i) {
        cout << "Input: " << trainingData[i][0] << ", " << trainingData[i][1] << " Output: " << adaline.predict(trainingData[i]) << endl;
    }

    return 0;
}

5. 总结

通过本文的介绍,你了解了Adaline算法的原理、实现步骤,并通过C/C++源码示例实现了一个简单的Adaline模型。希望本文对你有所帮助,欢迎在评论区分享你的想法和建议!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1829449.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

C++11参数包...Args

以list中的包装器做介绍 包装器是由一个类模板接收后存储在统一的...Args中 标准格式 说明&#xff1a;...Args就是参数包的类型 实例&#xff1a; //参数包 void Show() {cout <<"结束" << endl; }template<class T,class ...Args> void Show(T…

跟着刘二大人学pytorch(第---13---节课之RNN高级篇)

文章目录 0 前言0.1 课程视频链接&#xff1a;0.2 课件下载地址&#xff1a; 1 本节课任务描述模型的处理过程训练循环初始化分类器是否使用GPU构造损失函数和优化器每个epoch所要花费的时间遍历每个epoch时进行训练和测试记录每次测试的准确率加入到列表中 具体实现&#xff0…

哇塞,超好吃的麻辣片,一口就爱上

最近&#xff0c;我发现了一款让人欲罢不能的美食——食家巷麻辣片&#xff01;&#x1f60d; 一打开包装&#xff0c;那浓郁的麻辣香气就扑鼻而来&#xff0c;瞬间刺激着我的嗅觉神经。&#x1f603;食家巷麻辣片的外观色泽鲜艳&#xff0c;红通通的一片&#xff0c;看着就特…

Verilog综合出来的图

Verilog写代码时需要清楚自己综合出来的是组合逻辑、锁存器还是寄存器。 甚至&#xff0c;有时写的代码有误&#xff0c;vivado不能识别出来&#xff0c;这时打开综合后的schematic简单查看一下是否综合出想要的结果。 比如&#xff1a;误将一个always模块重复一遍&#xff0c;…

Java环境安装

下载JDK https://www.oracle.com/cn/java/technologies/downloads/#jdk22-windows 点开那个下载都可以但是要记住下载的路径因为下一步要添加环境变量 选择编辑系统环境变量 点击环境变量 点击新建 新建环境变量JAVA_HOME 并输入JDK在计算机保存的路径 打开cmd 输入java -…

深度解析Spring事务管理:从源码到实际应用

引言 Spring框架的事务管理是Java企业级应用开发中不可或缺的一部分。它提供了一种声明式和编程式的事务管理方式&#xff0c;极大地简化了事务的处理。本文将深入探讨Spring事务的底层实现原理&#xff0c;通过源码分析&#xff0c;揭示其内部工作机制。 EnableTransactionMan…

举例说明 如何判断Spark作业的瓶颈

首先看哪个Job执行时间长&#xff1a; 例如下图中明显Job 2时间执行最长&#xff0c;这个对rdd作业是直观有效的。 对于sql作业可能不准确&#xff0c;sql需要关注stage的详情耗时。 然后看执行时间长的Job中哪个stage执行时间长&#xff1a; 明显stage 7和stage 13执行时间长&…

Excel中多条件判断公式怎么写?

在Excel里&#xff0c;这种情况下的公式怎么写呢&#xff1f; 本题有两个判断条件&#xff0c;按照题设&#xff0c;用IF函数就可以了&#xff0c;这样查看公式时逻辑比较直观&#xff1a; IF(A2>80%, 4, IF(A2>30%, 8*(A2-30%),0)) 用IF函数写公式&#xff0c;特别是当…

单列集合顶层接口Collection及五类遍历方式(迭代器)

collection add方法细节&#xff1a; remove方法细节&#xff1a; contains方法细节&#xff1a; 如果集合中存储的是自定义对象, student之类的, 也想通过contains进行判断, 就必须在javaBean中重写equals方法 contains在arrayList中源代码&#xff1a;在底层调用了equals方…

爱了爱了,11款超良心App推荐!

AI视频生成&#xff1a;小说文案智能分镜智能识别角色和场景批量Ai绘图自动配音添加音乐一键合成视频https://aitools.jurilu.com/今天&#xff0c;我们向你推荐十款与众不同但又不错的win10软件&#xff0c;它们都有各自的功能和优点&#xff0c;相信你一定会喜欢。 1.图片处…

大数据开发流程解析

大数据开发是一个复杂且系统的过程&#xff0c;涉及需求分析、数据探查、指标管理、模型设计、ETL开发、数据验证、任务调度以及上线管理等多个阶段。本文将详细介绍每个阶段的内容&#xff0c;并提供相关示例和代码示例&#xff0c;帮助理解和实施大数据开发流程。 本文中的示…

通义千问调用笔记

如何使用通义千问API_模型服务灵积(DashScope)-阿里云帮助中心 package com.ruoyi.webapp.utils;import com.alibaba.dashscope.aigc.generation.Generation; import com.alibaba.dashscope.aigc.generation.GenerationOutput; import com.alibaba.dashscope.aigc.generation.G…

期末算法复习

0-1背包问题&#xff08;动态规划&#xff09; 例题 算法思想&#xff1a; 动态规划的核心思想是将原问题拆分成若干个子问题&#xff0c;并利用已解决的子问题的解来求解更大规模的问题。 主要是状态转移方程和状态 算法描述&#xff1a; 初始化一个二维数组dp&#xff0…

深度学习 --- stanford cs231学习笔记三(卷积神经网络CNN)

卷积神经网络CNN 1&#xff0c;有效的利用了图像的空间信息/局部感受野 全连接神经网络中的神经是由铺平后的所有像素计算决定。 由于计算时是把图像的所有像素拉成了一条线&#xff0c;因此在拉伸的同时也损失了图像像素之间固有的空间信息。 卷积层中的神经只由5x5x3(假设fil…

JavaFX文本

另一个基本的JavaFX节点是Text节点&#xff0c;它允许我们在场景图上显示文本。要创建Text节点&#xff0c;请使用javafx.scene.text.Text类。 所有JavaFX场景节点都从javafx.scene.Node中扩展&#xff0c;并且它们继承了许多功能&#xff0c;例如缩放&#xff0c;翻译或旋转的…

稀疏矩阵是什么 如何求

稀疏矩阵是一种特殊类型的矩阵&#xff0c;其中大多数元素都是零。由于稀疏矩阵中非零元素的数量远少于零元素&#xff0c;因此可以使用特定的数据结构和算法来高效地存储和处理它们&#xff0c;从而节省存储空间和计算时间。 RowPtr 数组中的每个元素表示对应行的第一个非零元…

计算机缺失msvcr110.dll如何解决,这6种解决方法可有效解决

电脑已经成为我们生活和工作中不可或缺的工具&#xff0c;然而在使用电脑的过程中&#xff0c;我们常常会遇到一些问题&#xff0c;其中之一就是电脑找不到msvcr110.dll文件。这个问题可能会给我们带来一些困扰&#xff0c;但是只要我们了解其原因并采取相应的解决方法&#xf…

C 语言连接MySQL 数据库

前提条件 本机安装MySQL 8 数据库 整体步骤 第一步&#xff1a;开启Windows 子系统安装Ubuntu 22.04.4&#xff0c;安装MySQL 数据库第三方库执行 如下命令&#xff1a; sudo aptitude install libmysqlclient-dev wz2012LAPTOP-8R0KHL88:/mnt/e/vsCode/cpro$ sudo aptit…

使用Java Spring Boot生成二维码与条形码

个人名片 &#x1f393;作者简介&#xff1a;java领域优质创作者 &#x1f310;个人主页&#xff1a;码农阿豪 &#x1f4de;工作室&#xff1a;新空间代码工作室&#xff08;提供各种软件服务&#xff09; &#x1f48c;个人邮箱&#xff1a;[2435024119qq.com] &#x1f4f1…

导出excle表

文章目录 导出excle表需求场景引入依赖具体代码 导出excle表 需求场景 假设我们有一个需求&#xff0c;现在数据库中有一些用户信息&#xff0c;我们想要把这些信息导出到excle表格中&#xff0c;然后存储到本地磁盘中。要求&#xff1a;excle表格的第一行需要有黄色背景&…