前言:
当阅读过前一篇我的博客之后,并且认真去读懂了那篇文章末尾的代码,那么,后续的算法改进对于你来说应当是很容易的了。前文中提及过,粒子群在进行迭代时,每迭代一次,都会根据自己个体最优值,全局最优值,自身惯性三个因子,来决定粒子下一次的飞行方向。传统的粒子群算法为什么是传统,就是他这三个因子,都是保持的一个常数值,缺乏适应性,这也就是为什么需要进行改进粒子群算法。
本文的目标:
1.解释如何对传统粒子群优化进行简单改进,与第一篇文章结果进行对比;
2.通过改变粒子群中粒子的数量,存档库的大小,迭代次数,观察算法效果。
基础知识:
1.传统型粒子群算法更新粒子的方式-------请看下面这篇博文,讲解十分精炼(基于Python实现)粒子群算法(Particle Swarm Optimization)超详细解析+入门代码实例讲解-CSDN博客
先看上边这个公式1(红圈),表示第n个粒子,在k+1次迭代时候的位置=第k次迭代时的位置+即将移动的速度(第k+1次的移动速度)。需要注意,粒子的位置使用一组数值来表示的,速度是对粒子位置进行增减,也是和前者尺寸长度相同的一组数值。所以,粒子的位置实际上就是代表问题的一组解。下面这个公式2(红圈)是在计算k+1次时候的速度,这个速度由粒子自身惯性(鸟飞行时的惯性)、个体最优值(这只鸟自己飞行时候遇见的最佳历史值)、群体最优值(整个鸟群飞行时候遇见的最佳历史值)共同决定。w'是粒子本身惯性权重因子,c1'和c2'是学习因子,r1'和r2'是分布在[0,1]区间内的随机数。以上w',c1',c2'都是保持一个恒定值,这样子求解容易出现局部最优解的情况,无法探索更大的空间。---------------传统型PSO的特点,恒定值导致的定步长,使得搜索成本增加,且不一定能够搜索到最优(这一点可以去哔哩哔哩上看动画演示)
2.粒子群群里粒子的数量越多,也就是每次参与寻找食物的鸟的数量越多,在同样的迭代次数下,寻找到全局最优的可能性越大,而且更加趋于收敛。在粒子群群里粒子数量一定的情况下,延长迭代次数,也可以达到寻找全局最优的效果,但是收敛的时间可能会比较漫长。毫无疑问,更大的粒子数量和迭代次数,都会导致搜索时间成本的增加,所以需要慎重选择二者间的平衡。
3.改进后的粒子群算法更新粒子方式---------------------将定步长修改为变步长
大致意思就是:在开始迭代的时候,粒子的迭代策略更加注重自身的最优解,以达到增大全局探索能力的目的。迭代次数过半的时候,开始逐渐将重点放在全局最优解,寻求一个稳定的收敛。
改进后的粒子群算法更新方式如下:
只对原来的恒定值做了更新,让其随着迭代次数的逐渐增加而C1数值逐渐减小,C2逐渐增大。
代码实现:
调整迭代次数和粒子个数
设置迭代次数为200,粒子个数为500,存档库的大小为500,点击运行代码即可。最直观的感受是,单次运算速度相比之前(迭代次数100,粒子个数100,存档库100)慢了很多,在视图上可以看见更多的粒子在动态搜索。下图为最新粒子个数
下面这个是迭代次数设置为100,粒子个数为100时候的对比
能够很明显看到,粒子数为500时候对应的界面更加密集。
改进粒子群算法代码如下:
链接:https://pan.baidu.com/s/1LmaxCCHlg-HhtaYZThoi9Q
提取码:3333
搭配复现的论文PDF:
链接:https://pan.baidu.com/s/1tbuboB1sI6wIzMlkZdK7iw
提取码:2222
暂时先告一段落啦,休息一会儿。