2. 宣读数字【算法赛】
思维题,注意到完全平方数的约数是奇数个,其余都是偶数个。
#include <bits/stdc++.h>
using namespace std;
#define LL long long
#define pb push_back
#define x first
#define y second
#define int long long
#define endl '\n'
const LL maxn = 4e05+7;
const LL N = 5e05+10;
const LL mod = 988244353;
const int inf = 0x3f3f3f3f;
const LL llinf = 5e18;
typedef pair<int,int>pl;
priority_queue<LL , vector<LL>, greater<LL> >mi;//小根堆
priority_queue<LL> ma;//大根堆
LL gcd(LL a, LL b){
return b > 0 ? gcd(b , a % b) : a;
}
LL lcm(LL a , LL b){
return a / gcd(a , b) * b;
}
int n , m;
vector<int>a(N , 0);
void init(int n){
for(int i = 0 ; i <= n ; i ++){
a[i] = 0;
}
}
LL qpow(LL a , LL b)//快速幂
{
LL sum=1;
while(b){
if(b&1){
sum=sum*a%mod;
}
a=a*a%mod;
b>>=1;
}
return sum;
}
std::vector<int> minp, primes;
void sieve(int n) {
minp.assign(n + 1, 0);
primes.clear();
for (int i = 2; i <= n; i++) {
if (minp[i] == 0) {
minp[i] = i;
primes.push_back(i);
}
for (auto p : primes) {
if (i * p > n) {
break;
}
minp[i * p] = p;
if (p == minp[i]) {
break;
}
}
}
}
void solve()
{
cin >> n;
if((int)sqrt(n) * (int)sqrt(n) == n){
cout <<"L\n";
}
else{
cout <<"Q\n";
}
}
signed main()
{
ios::sync_with_stdio(false);
cin.tie(0);
cout.tie(0);
cout.precision(10);
int t=1;
sieve(N);
cin>>t;
while(t--)
{
solve();
}
return 0;
}
3. 最大质因子个数【算法赛】
贪心:用尽可能多的质数来构造这个数。
#include <bits/stdc++.h>
using namespace std;
#define LL long long
#define pb push_back
#define x first
#define y second
#define int long long
#define endl '\n'
const LL maxn = 4e05+7;
const LL N = 5e05+10;
const LL mod = 988244353;
const int inf = 0x3f3f3f3f;
const LL llinf = 5e18;
typedef pair<int,int>pl;
priority_queue<LL , vector<LL>, greater<LL> >mi;//小根堆
priority_queue<LL> ma;//大根堆
LL gcd(LL a, LL b){
return b > 0 ? gcd(b , a % b) : a;
}
LL lcm(LL a , LL b){
return a / gcd(a , b) * b;
}
int n , m;
vector<int>a(N , 0);
void init(int n){
for(int i = 0 ; i <= n ; i ++){
a[i] = 0;
}
}
LL qpow(LL a , LL b)//快速幂
{
LL sum=1;
while(b){
if(b&1){
sum=sum*a%mod;
}
a=a*a%mod;
b>>=1;
}
return sum;
}
std::vector<int> minp, primes;
void sieve(int n) {
minp.assign(n + 1, 0);
primes.clear();
for (int i = 2; i <= n; i++) {
if (minp[i] == 0) {
minp[i] = i;
primes.push_back(i);
}
for (auto p : primes) {
if (i * p > n) {
break;
}
minp[i * p] = p;
if (p == minp[i]) {
break;
}
}
}
}
void solve()
{
int n;
cin >> n;
int cnt = 0;
int tmp = 1;
for(auto it : primes){
if(n / it >= tmp){
cnt++;
tmp *= it;
}
else{
break;
}
}
cout << cnt << endl;
}
signed main()
{
ios::sync_with_stdio(false);
cin.tie(0);
cout.tie(0);
cout.precision(10);
int t=1;
sieve(N);
cin>>t;
while(t--)
{
solve();
}
return 0;
}
4. 物流选址【算法赛】
注意到无论怎么改变,这两个数的差值不会变,因此考虑到差值的每个约数能否满足题意,记录最小值即可。
#include <bits/stdc++.h>
using namespace std;
#define LL long long
#define pb push_back
#define x first
#define y second
#define int long long
#define endl '\n'
const LL maxn = 4e05+7;
const LL N = 5e05+10;
const LL mod = 988244353;
const int inf = 0x3f3f3f3f;
const LL llinf = 5e18;
typedef pair<int,int>pl;
priority_queue<LL , vector<LL>, greater<LL> >mi;//小根堆
priority_queue<LL> ma;//大根堆
LL gcd(LL a, LL b){
return b > 0 ? gcd(b , a % b) : a;
}
LL lcm(LL a , LL b){
return a / gcd(a , b) * b;
}
int n , m;
vector<int>a(N , 0);
void init(int n){
for(int i = 0 ; i <= n ; i ++){
a[i] = 0;
}
}
LL qpow(LL a , LL b)//快速幂
{
LL sum=1;
while(b){
if(b&1){
sum=sum*a%mod;
}
a=a*a%mod;
b>>=1;
}
return sum;
}
void solve()
{
int n , m;
cin >> n >> m;
int k = m - n;
if(k == 0 || m % n == 0){
cout << 0 << endl;
}
else if(k == 1 || n >= k){
cout << -1 << endl;
}
else{
int ans = llinf;
for(int i = 2 ; i * i <= k ; i ++){//可能的倍数
if(k % i == 0){
if(n % i == m % i){
int tmpn = n + i - (n % i);
int tmpm = m + i - (m % i);
if(tmpm % tmpn == 0){
ans = min(ans , i - n % i);
}
}
if(n % (k / i) == m % (k / i)){
int tmpn = n + (k / i) - (n % (k / i));
int tmpm = m + (k / i) - (m % (k / i));
if(tmpm % tmpn == 0){
ans = min(ans , k / i - m % (k / i));
}
}
}
}
int i = k;
int tmpn = n + i - (n % i);
int tmpm = m + i - (m % i);
if(tmpm % tmpn == 0){
ans = min(ans , i - n % i);
}
if(ans == llinf){
cout << -1 << endl;
}
else{
cout << ans << endl;
}
}
}
signed main()
{
ios::sync_with_stdio(false);
cin.tie(0);
cout.tie(0);
cout.precision(10);
int t=1;
cin>>t;
while(t--)
{
solve();
}
return 0;
}
5. 小蓝的MEX问题【算法赛】
计数问题,对于每次询问,大于k的数全部可以选或者不选,而小于k的数至少选一个,然后可以预处理出所有的MEX取值情况,最后输出即可。
#include <bits/stdc++.h>
using namespace std;
#define LL long long
#define pb push_back
#define x first
#define y second
#define int long long
#define endl '\n'
const LL maxn = 4e05+7;
const LL N = 5e05+10;
const LL mod = 998244353;
const int inf = 0x3f3f3f3f;
const LL llinf = 5e18;
typedef pair<int,int>pl;
priority_queue<LL , vector<LL>, greater<LL> >mi;//小根堆
priority_queue<LL> ma;//大根堆
LL gcd(LL a, LL b){
return b > 0 ? gcd(b , a % b) : a;
}
LL lcm(LL a , LL b){
return a / gcd(a , b) * b;
}
int n , m;
vector<int>a(N , 0);
void init(int n){
for(int i = 0 ; i <= n ; i ++){
a[i] = 0;
}
}
LL qpow(LL a , LL b)//快速幂
{
LL sum=1;
while(b){
if(b&1){
sum=sum*a%mod;
}
a=a*a%mod;
b>>=1;
}
return sum;
}
void solve()
{
int n , m;
cin >> n >> m;
vector<int>cnt(n + 5 ,0);
for(int i = 0 ; i < n ; i ++){
cin >> a[i];
cnt[a[i]] ++;
}
int MEX = 0;
while(cnt[MEX] > 0){
MEX++;
}
int pre = 1;
vector<int>ans(n + 5 , 0);
int tot = n;
for(int i = 0 ; i <= MEX ; i ++){
tot -= cnt[i];//这些随便选
if(i == 0){
ans[i] = qpow(2 , tot);
ans[i]--;
ans[i] += mod;
ans[i] %= mod;
}
else{
ans[i] = pre * qpow(2 , tot);
ans[i] %= mod;
}
pre *= ((qpow(2 , cnt[i]) - 1 + mod) % mod);
pre %= mod;
}
for(int i = 0 ; i < m ; i ++){
int x;
cin >> x;
cout << ans[x] << endl;
}
}
signed main()
{
ios::sync_with_stdio(false);
cin.tie(0);
cout.tie(0);
cout.precision(10);
int t=1;
//cin>>t;
while(t--)
{
solve();
}
return 0;
}
6. 平摊购买费用【算法赛】
首先发现排序后没影响,因此先排个序,然后发现若要使得 l - f 最小,必然选取的是前y个数和后m-y个数。
构建关于y的函数,发现这是一个有波谷的函数,因此考虑三分求波谷即可。
#include <bits/stdc++.h>
using namespace std;
#define LL long long
#define pb push_back
#define x first
#define y second
#define int long long
#define endl '\n'
const LL maxn = 4e05+7;
const LL N = 5e05+10;
const LL mod = 988244353;
const int inf = 0x3f3f3f3f;
const LL llinf = 5e18;
typedef pair<int,int>pl;
priority_queue<LL , vector<LL>, greater<LL> >mi;//小根堆
priority_queue<LL> ma;//大根堆
LL gcd(LL a, LL b){
return b > 0 ? gcd(b , a % b) : a;
}
LL lcm(LL a , LL b){
return a / gcd(a , b) * b;
}
int n , m;
vector<int>a(N , 0);
void init(int n){
for(int i = 0 ; i <= n ; i ++){
a[i] = 0;
}
}
LL qpow(LL a , LL b)//快速幂
{
LL sum=1;
while(b){
if(b&1){
sum=sum*a%mod;
}
a=a*a%mod;
b>>=1;
}
return sum;
}
void solve()
{
int n , m;
cin >> n >> m;
int a[n + 5];
set<int>st;
vector<int>pre(n + 5 , 0);
for(int i = 1 ; i <= n ; i ++)
cin >> a[i] , st.insert(a[i]);
sort(a + 1, a + n + 1);
for(int i = 1 ; i <= n ; i ++){
pre[i] = pre[i - 1] + a[i];
}
map<int,int>mp;
int idx = 1;
for(auto it :st){
mp[it] = idx++;
}
map<int,int>pm;
for(int i = 1 ; i <= n ; i ++){
int id = mp[a[i]];
if(!pm.count(id)){
pm[id] = i;
}
}
//先找比x大的位置
for(int i = 0 ; i < m ; i ++){
int x , c;
cin >> x >> c;
auto it = st.lower_bound(x);
if(it == st.end()){
cout << pre[c] << endl;
}
else{
int tmp = *it;
//取前几个跟最后几个
int ans = pre[c];
auto check =[&] (int t){
return pre[c - t] + t * x - (pre[n] - pre[n - t] - t * x);
};
int l = 0 , r = c;
while(l < r){
int mid = (r - l) / 3;
if(r - l < 3){
for(int j = l ; j <= r ; j ++){
ans = min(ans , check(j));
}
break;
}
int m1 = l + mid;
int m2 = m1 + mid;
if(check(m1) > check(m2)){
l = m1;
}
else{
r = m2;
}
}
cout << ans << endl;
}
}
}
signed main()
{
ios::sync_with_stdio(false);
cin.tie(0);
cout.tie(0);
cout.precision(10);
int t=1;
//cin>>t;
while(t--)
{
solve();
}
return 0;
}
4. 电力之城【算法赛】
观察到一次只会使得电能增加1/2,而最终总的电能是可以确定的,因此变成了一个NIM问题,每次能拿一个或两个石头,求最终谁拿走了最后的石头。
#include <bits/stdc++.h>
using namespace std;
#define LL long long
#define pb push_back
#define x first
#define y second
#define endl '\n'
const LL maxn = 4e05+7;
const LL N = 5e05+10;
const LL mod = 1e09+7;
const int inf = 0x3f3f3f3f;
const LL llinf = 5e18;
typedef pair<int,int>pl;
priority_queue<LL , vector<LL>, greater<LL> >mi;//小根堆
priority_queue<LL> ma;//大根堆
LL gcd(LL a, LL b){
return b > 0 ? gcd(b , a % b) : a;
}
LL lcm(LL a , LL b){
return a / gcd(a , b) * b;
}
int n , m;
vector<int>a(N , 0);
void init(int n){
for(int i = 0 ; i <= n ; i ++){
a[i] = 0;
}
}
void solve()
{
int n;
cin >> n;
string s;
cin >> s;
int cnt = 0;
for(int i = 1 ; i < n ;i ++){
cnt += (s[i] == s[i - 1]);
}
if(cnt % 3 == 0){
cout << "qiao\n";
}
else{
cout <<"lan\n";
}
}
int main()
{
ios::sync_with_stdio(false);
cin.tie(0);
cout.tie(0);
cout.precision(10);
int t=1;
cin>>t;
while(t--)
{
solve();
}
return 0;
}
5. 价值共性度【算法赛】
此题类似于昆明邀请赛的E题,需要知道这么一个事实:一个长度为n的数列,前缀GCD的数量不会超过logn个,因此我们只需要维护以某个数结尾,向前能够组成多少个GCD即可,并且记录这些GCD的最左侧位置,然后暴力求答案即可。
#include <bits/stdc++.h>
using namespace std;
#define LL long long
#define pb push_back
#define x first
#define y second
#define int long long
#define endl '\n'
const LL maxn = 4e05+7;
const LL N = 1e6+10;
const LL mod = 988244353;
const int inf = 0x3f3f3f3f;
const LL llinf = 5e18;
typedef pair<int,int>pl;
priority_queue<LL , vector<LL>, greater<LL> >mi;//小根堆
priority_queue<LL> ma;//大根堆
LL gcd(LL a, LL b){
return b > 0 ? gcd(b , a % b) : a;
}
LL lcm(LL a , LL b){
return a / gcd(a , b) * b;
}
int n , m;
vector<int>a(N , 0);
void init(int n){
for(int i = 0 ; i <= n ; i ++){
a[i] = 0;
}
}
LL qpow(LL a , LL b)//快速幂
{
LL sum=1;
while(b){
if(b&1){
sum=sum*a%mod;
}
a=a*a%mod;
b>>=1;
}
return sum;
}
std::vector<int> minp, primes;
void sieve(int n) {
minp.assign(n + 1, 0);
primes.clear();
for (int i = 2; i <= n; i++) {
if (minp[i] == 0) {
minp[i] = i;
primes.push_back(i);
}
for (auto p : primes) {
if (i * p > n) {
break;
}
minp[i * p] = p;
if (p == minp[i]) {
break;
}
}
}
}
void solve()
{
set< pair<int,int> >st;//前缀gcd
set< pair<int,int> >pre;
int n , k;
cin >> n >> k;
for(int i = 1 ; i <= n ; i ++){
cin >> a[i];
}
vector<int>S(n + 5 , 0);
for(int i = 1 ; i <= n ; i ++){
S[i] = S[i - 1] + a[i];
}
int ans = 0;
for(int i = 1 ; i <= n ; i ++){
st.empty();
set< pair<int,int> >tmp;
tmp.insert({a[i] , i});
for(auto it : pre){
tmp.insert({gcd(a[i] , it.first) , it.second});
}
pre.clear();
map<int,int>mp;
for(auto it : tmp){
if(mp.count(it.first)){
continue;
}
else{
mp[it.first] = 1;
if(i - it.second + 1 >= k){
ans = max(ans , it.first * (S[i] - S[it.second - 1]));
}
st.insert(it);
}
}
swap(st , pre);
}
cout << ans << endl;
}
signed main()
{
ios::sync_with_stdio(false);
cin.tie(0);
cout.tie(0);
cout.precision(10);
int t=1;
//cin>>t;
while(t--)
{
solve();
}
return 0;
}
6. 小蓝的逆序对问题【算法赛】
(不是正解..但卡过去了)
如此复杂度,想到用根号分治来解决问题,考虑交换两数后的逆序对该如何变化,然后想办法维护每个区间的信息
#include <bits/stdc++.h>
using namespace std;
#define LL long long
#define pb push_back
#define x first
#define y second
#define endl '\n'
const LL maxn = 4e05+7;
const LL N = 2e05+10;
const LL mod = 1e09+7;
const int inf = 0x3f3f3f3f;
const LL llinf = 5e18;
const int B = 800;
typedef pair<int,int>pl;
priority_queue<LL , vector<LL>, greater<LL> >mi;//小根堆
priority_queue<LL> ma;//大根堆
LL gcd(LL a, LL b){
return b > 0 ? gcd(b , a % b) : a;
}
LL lcm(LL a , LL b){
return a / gcd(a , b) * b;
}
int n , m;
vector<int>num(N , 0);
long long sum = 0;
void merge(int s1, int e1, int s2, int e2){
vector<int> temp;
int p1 = s1;
int p2 = s2;
while(p1 <= e1&&p2 <= e2){
if(num[p1] <= num[p2]){
temp.push_back(num[p1++]);
}
else{
sum += (e1-p1+1);
temp.push_back(num[p2++]);
}
}
while(p1 <= e1){
temp.push_back(num[p1++]);
}
while(p2 <= e2){
temp.push_back(num[p2++]);
}
for(int i = 0;i < (int)temp.size();i++){
num[s1+i] = temp[i];
}
}
void mergesort(int str, int end){
if(str < end){
int mid = (str + end)/2;
mergesort(str,mid);
mergesort(mid+1,end);
merge(str,mid,mid+1,end);
}
}
struct BIT{//Binary indexed Tree(树状数组)
int n;
vector<int> t;
BIT(int n) : n(n) , t(n + 1 , 0){
}
int lowbit(int x){
return x & -x;
}
void modify(int k, int v) {
while (k <= n) {
t[k] += v;
k += lowbit(k);
}
}
void modify(int l, int r, int v) {
modify(l, v), modify(r + 1, -v); // 将区间加差分为两个前缀加
}
int query(int k) {
int ret = 0;
while(k) {
ret += t[k];
k -= lowbit(k);
}
return ret;
}
int query(int l , int r){
return query(r) - query(l - 1);
}
};
int ans[500][N];
void solve()
{
int n , k;
cin >> n >> k;
vector<int>idx(n + 5 , 0);
memset(ans , -1 , sizeof ans);
int tot = 505;
vector<BIT>bit;
for(int i = 0 ; i < tot ; i ++){
BIT tmp(N);
bit.pb(tmp);
}
for(int i = 1 ; i <= n ; i ++){
cin >> num[i];
idx[i] = (i - 1) / B;
}
int a[n + 5];
for(int i = 1 ; i <= n ; i ++){
a[i] = num[i];
}
unordered_map<int,int>mp;
set<int>st;
for(int i = 1 ; i <= n ; i ++){
st.insert(num[i]);
}
int id = 1;
for(auto it : st){
mp[it] = id++;
}
for(int i = 1 ; i <= n ; i ++){
int id = idx[i];
int tp = mp[a[i]];
bit[id].modify(tp + 1, 1);
}
mergesort(1,n);
// cout << bit[0].query(4) << endl;
for(int i = 0 ; i < k; i ++){
int l , r;
cin >> l >> r;
long long tmp = sum;
int ll = idx[l] , rr = idx[r];
// cout << ll << " " << rr << endl;
if(ll == rr){
for(int i = l ; i <= r ; i ++){
if(a[r] < a[i]){
tmp--;
}
if(a[l] > a[i]){
tmp--;
}
if(a[l] < a[i]){
tmp++;
}
if(a[r] > a[i]){
tmp++;
}
}
}
else{
for(int i = ll ; i <= rr ; i ++){
if(i == ll){
for(int j = l ; j <= (ll + 1) * B ; j ++){
if(a[r] < a[j]){
tmp--;
}
if(a[l] > a[j]){
tmp--;
}
if(a[l] < a[j]){
tmp++;
}
if(a[r] > a[j]){
tmp++;
}
}
}
else if(i == rr){
for(int j = rr * B + 1 ; j <= r ; j ++){
if(a[r] < a[j]){
tmp--;
}
if(a[l] > a[j]){
tmp--;
}
if(a[l] < a[j]){
tmp++;
}
if(a[r] > a[j]){
tmp++;
}
}
}
else{
int id1 = mp[a[r]];
if(ans[i][id1] != -1){
tmp += ans[i][id1];
}
else{
ans[i][id1] = bit[i].query(id1);
tmp += ans[i][id1];
}
if(ans[i][id1 + 1] != -1){
tmp -= B - ans[i][id1 + 1];//比a[r]大的
}
else{
ans[i][id1 + 1] = bit[i].query(id1 + 1);
tmp -= B - ans[i][id1 + 1];//比a[r]大的
}
int id2 = mp[a[l]];
if(ans[i][id2] != -1){
tmp -= ans[i][id2];
}
else{
ans[i][id2] = bit[i].query(id2);
tmp -= ans[i][id2];
}
if(ans[i][id2 + 1] != -1){
tmp += B - ans[i][id2 + 1];//比a[r]大的
}
else{
ans[i][id2 + 1] = bit[i].query(id2 + 1);
tmp += B - ans[i][id2 + 1];//比a[r]大的
}
}
//cout << tmp << endl;
}
}
if(a[l] > a[r]) tmp++;
if(a[l] < a[r]) tmp--;
cout << tmp << endl;
}
}
signed main()
{
ios::sync_with_stdio(false);
cin.tie(0);
cout.tie(0);
cout.precision(10);
int t=1;
//cin>>t;
while(t--)
{
solve();
}
return 0;
}