【因果推断python】36_断点回归2

news2024/11/27 9:40:59

目录

RDD 估计

内核加权


RDD 估计

RDD 依赖的关键假设是阈值处潜在结果的平滑性。用比较正式地表述来说,当运行变量从右侧和左侧接近阈值时,潜在结果的极限应该是相同的。

\lim_{r\to c^-}E[Y_{ti}|R_i=r]=\lim_{r\to c^+}E[Y_{ti}|R_i=r]

如果这是真的,我们可以在阈值处找到因果关系

\begin{aligned} \lim_{r\to c^+}E[Y_{ti}|R_i=r]-\lim_{r\to c^-}E[Y_{ti}|R_i=r]& =\lim_{r\to c^+}E[Y_{1i}|R_i=r]-\lim_{r\to c^-}E[Y_{0i}|R_i=r] \\ &=E[Y_{1i}|R_i=r]-E[Y_{0i}|R_i=r] \\ &=E[Y_{1i}-Y_{0i}|R_i=r] \end{aligned}

从其本身意义来说,这是一种局部平均干预效果(LATE),因为我们只能在阈值处知道它。在这种情况下,我们可以将 RDD 视为局部随机试验。对于那些处于阈值附近的人来说,干预可能会采取任何一种方式,有些人可能低于门槛,有些人则可能超过了门槛。在我们的示例中,在同一时间点,有些人刚刚超过 21 岁,有些人刚刚低于 21 岁。决定这一点的是某人是否在几天后出生,这是非常随机的。基于这个原因,RDD 提供了一个非常引人注目的因果故事。它不是 RCT 的黄金标准,但很接近。

现在,要估计阈值处的干预效果,我们需要做的就是估计上面公式中的两个极限值并进行比较。最简单的方法是运行线性回归

为了使其工作,我们将一个高于阈值的虚拟变量与运行变量进行交叉

y_i=\beta_0+\beta_1r_i+\beta_21r_i>c+\beta_31r_i>cr_i

本质上,这与在阈值之上拟合线性回归并在阈值之下拟合另一个线性回归相同。参数 \beta_{0} 是低于阈值的回归的截距,而 \beta_0+\beta_2 是高于阈值的回归的截距。

这就是将运行变量在阈值处取零的技巧发挥作用的地方。在这个预处理步骤之后,阈值变为零。这导致截距 \beta_{0} 成为阈值处的预测值,用于低于它的回归。换句话说,\beta_0=\lim_{r\to c^-}E[Y_{ti}|R_i=r]。同理,\beta_0+\beta_2 是上述结果的极限。威奇的意思是

\lim_{r\to c^+}E[Y_{ti}|R_i=r]-\lim_{r\to c^-}E[Y_{ti}|R_i=r]=\beta_2=E[ATE|R=c]

下面的代码展示了当我们想估计在21 岁时饮酒对死亡造成的影响。

rdd_df = drinking.assign(threshold=(drinking["agecell"] > 0).astype(int))

model = smf.wls("all~agecell*threshold", rdd_df).fit()

model.summary().tables[1]

这个模型告诉我们,随着饮酒,死亡率会增加 7.6627 个百分点。 另一种说法是,酒精会使各种原因的死亡几率增加 8% ((7.6627+93.6184)/93.6184)。 请注意,这也为我们的因果效应估计提供了标准误差。 在这种情况下,效果具有统计显着性,因为 p 值低于 0.01。

如果我们想直观地验证这个模型,我们可以在我们拥有的数据上显示预测值。 您可以看到,就好像我们有 2 个回归模型:一个用于高于阈值的模型,一个用于低于阈值的模型。

ax = drinking.plot.scatter(x="agecell", y="all", color="C0")
drinking.assign(predictions=model.fittedvalues).plot(x="agecell", y="predictions", ax=ax, color="C1")
plt.title("Regression Discontinuity");

如果我们对其他原因做同样的事,这是我们会得到的结果。

plt.figure(figsize=(8,8))

for p, cause in enumerate(["all", "mva", "suicide"], 1):
    ax = plt.subplot(3,1,p)
    drinking.plot.scatter(x="agecell", y=cause, ax=ax)
    m = smf.wls(f"{cause}~agecell*threshold", rdd_df).fit()
    ate_pct = 100*((m.params["threshold"] + m.params["Intercept"])/m.params["Intercept"] - 1)
    drinking.assign(predictions=m.fittedvalues).plot(x="agecell", y="predictions", ax=ax, color="C1")
    plt.title(f"Impact of Alcohol on Death: {np.round(ate_pct, 2)}%")

plt.tight_layout()

RDD 告诉我们,酒精会使自杀和车祸死亡的几率增加 15%,这是一个相当大的数字。如果我们想尽量减少死亡率,这些结果是不降低饮酒年龄的有力论据。

内核加权

回归不连续性在很大程度上依赖于线性回归的外推特性。由于我们正在查看 2 条回归线的开头和结尾处的值,因此我们最好正确设置这些限制。可能发生的情况是,回归可能过于关注拟合其他数据点,而代价是在阈值处拟合不佳。如果发生这种情况,我们可能会得到错误的治疗效果衡量标准。

解决此问题的一种方法是为更接近阈值的点赋予更高的权重。有很多方法可以做到这一点,但一种流行的方法是使用 triangular kernel 重新加权样本

K(R,c,h)=|R-c|\leq h*(1-\frac{|R-c|}h)

这个内核的第一部分是我们是否接近阈值的指示函数。多近?这由带宽参数 hℎ 确定。这个内核的第二部分是一个加权函数。随着我们远离阈值,权重变得越来越小。这些权重除以带宽。如果带宽很大,则权重会以较慢的速度变小。如果带宽很小,权重很快就会变为零。

为了更容易理解,下面是这个内核应用于我们的问题的权重。我在这里将带宽设置为 1,这意味着我们只会考虑来自不超过 22 岁且不低于 20 岁的人的数据。

def kernel(R, c, h):
    indicator = (np.abs(R-c) <= h).astype(float)
    return indicator * (1 - np.abs(R-c)/h)
plt.plot(drinking["agecell"], kernel(drinking["agecell"], c=0, h=1))
plt.xlabel("agecell")
plt.ylabel("Weight")
plt.title("Kernel Weight by Age");

如果我们将这些权重应用于我们最初的问题,酒精的影响会变得更大,至少对于死于"所有原因"的情况是如此。 它从 7.6627 跃升至 9.7004。 结果仍然非常显著。 另外,请注意我使用的是 wls 而不是 ols

model = smf.wls("all~agecell*threshold", rdd_df,
                weights=kernel(drinking["agecell"], c=0, h=1)).fit()

model.summary().tables[1]

ax = drinking.plot.scatter(x="agecell", y="all", color="C0")
drinking.assign(predictions=model.fittedvalues).plot(x="agecell", y="predictions", ax=ax, color="C1")
plt.title("Regression Discontinuity (Local Regression)");

plt.figure(figsize=(8,8))
weights = kernel(drinking["agecell"], c=0, h=1)

for p, cause in enumerate(["all", "mva", "suicide"], 1):
    ax = plt.subplot(3,1,p)
    drinking.plot.scatter(x="agecell", y=cause, ax=ax)
    m = smf.wls(f"{cause}~agecell*threshold", rdd_df, weights=weights).fit()
    ate_pct = 100*((m.params["threshold"] + m.params["Intercept"])/m.params["Intercept"] - 1)
    drinking.assign(predictions=m.fittedvalues).plot(x="agecell", y="predictions", ax=ax, color="C1")
    plt.title(f"Impact of Alcohol on Death: {np.round(ate_pct, 2)}%")

plt.tight_layout()

除了自杀之外,似乎使用核函数加权会使对酒精的负面影响更大。再同样的,如果我们想将死亡率降到最低,我们不应该建议降低法定饮酒年龄,因为酒精对死亡率有明显的影响。

这个简单的案例涵盖了当断点回归完美运行​​时会发生什么。接下来,我们将看到一些我们应该运行的诊断步骤,以检查我们对 RDD 的信任程度,并讨论一个我们非常关心的话题:教育对收入的影响。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1825762.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

RocketMQ源码学习笔记:源码启动NameServer,Broker

这是本人学习的总结&#xff0c;主要学习资料如下 马士兵教育rocketMq官方文档 目录 1、Overview2、NameServer2.1、源码启动NameServer 3、Broker启动过程 1、Overview 这篇文章的源码的版本是release-4.9.8。在启动各个模块之前应该先对项目进行打包mvn install -Dmaven.te…

大数据实训项目(小麦种子)-04、大数据实训项目JavaWeb环境搭建

文章目录 前言运行前准备工作1、安装Hadoop3.1.0配置winutils原因描述配置方式注意点&#xff08;hadoop.dll拷贝System32目录下&#xff09; 2、hive运行报错&#xff08;The dir: /tmp/hive on HDFS should be writable. &#xff09; 项目环境搭建参考资料 前言 博主介绍&a…

【类脑计算】突触可塑性模型之Hebbian学习规则和STDP

1 引言 突触可塑性 (Synaptic plasticity)指经验能够修改神经回路功能的能力。特指基于活动修改突触传递强度的能力&#xff0c;是大脑适应新信息的主要调查机制。分为短期和长期突触可塑性&#xff0c;分别作用于不同时间尺度&#xff0c;对感官刺激的短期适应和长期行为改变…

unity数独游戏

using System; using System.Collections; using System.Collections.Generic; using UnityEngine; using UnityEngine.UI;public class MainMenuPanel : MonoBehaviour {public Button btnPlay; // 开始按钮public Slider sldDifficulty; // 难度滑动条private void Awake(){/…

省去烦恼!轻松实现一台电脑登录多个微信号的秘诀揭秘!

你知道如何在同一台电脑上登录多个微信号&#xff0c;并实现聚合聊天吗&#xff1f; 今天&#xff0c;我将分享一个多微管理神器——个微管理系统&#xff0c;帮助你解决这一问题&#xff01; 1、多号同时登录&#xff0c;聚合聊天 无论你有多少个微信号&#xff0c;都可以一…

畅想智能美颜工具的未来:美颜SDK技术详解

美颜SDK作为技术的核心&#xff0c;承载了美颜工具的实现和创新。本篇文章&#xff0c;小编将深入探讨美颜SDK技术的细节。 一、技术原理 美颜SDK是一种软件开发工具包&#xff0c;集成了一系列图像处理算法和技术&#xff0c;旨在实现对照片和视频中人物的实时美化。其主要技…

Hyper-V如何将文件复制到虚拟机?教您3个简单的方法!

需要将文件复制到虚拟机&#xff01; “大家好&#xff0c;有谁知道Hyper-V怎么将文件复制到虚拟机吗&#xff1f;我有一些文件&#xff0c;想要从主机中复制进虚拟机中&#xff0c;但是我不知道该怎么操作&#xff0c;有谁可以帮帮我吗&#xff1f;谢谢。” Hyper-V虚拟机可…

家庭海外仓:优势,挑战以及如何利用海外仓系统提升效率

家庭海外仓凭借其灵活&#xff0c;服务优良的特点&#xff0c;一直受到很多跨境电商企业的欢迎&#xff0c;不过&#xff0c;在当今的市场竞争之下&#xff0c;家庭海外仓也同样面临一些挑战&#xff0c;今天我们就来系统的分析一下家庭海外仓应该如何通过海外仓系统的引入来解…

Web期末复习指南(2w字总结)

前言&#xff1a;本文旨在梳理Web技术常包含的内容&#xff0c;阅读完整篇文章后会对整体有个系统的认知&#xff0c;从前端的HTML到后端的MySql&#xff0c;对于大概试题中可能会涉及的地方都有所分析&#xff0c;通篇提供了许多代码案例&#xff0c;供读者更好的理解。对于一…

Oracle阅读Java帮助文档

进入到Help Center 选择Java 查看Java SE [version]对应版本相关的内容 查看其它版本 查看Java11 javac等相关参数 目录查看java相关命令

能耗分析与远程抄表是什么?

一、引言 在21世纪的数字化时代&#xff0c;能耗分析和远程抄表已成为现代能源管理的重要组成部分。这两项技术不仅提高了能源效率&#xff0c;还为企业和个人提供了更精细的能源使用数据&#xff0c;从而实现更科学的节能减排。 二、能耗分析的深度洞察 能耗分析是通过收集…

一文带你搞清楚AI领域的高频术语!RAG、Agent、知识库、向量数据库、知识图谱、Prompt...都是在讲啥?

随着AI人工智能技术的不断发展&#xff0c;一些领域有关的概念和缩写总是出现在各种文章里&#xff0c;像是Prompt Engineering、Agent 智能体、知识库、向量数据库、RAG 以及知识图谱等等&#xff0c;但是这些技术和概念也的的确确在AI大模型的发展中扮演着至关重要的角色。这…

java:spring【AnnotationMetadata】的简单使用例子

# 项目代码资源&#xff1a; 可能还在审核中&#xff0c;请等待。。。 https://download.csdn.net/download/chenhz2284/89435385 # 项目代码 【pom.xml】 <dependency><groupId>org.springframework.boot</groupId><artifactId>spring-boot-start…

设计模式-装饰器模式Decorator(结构型)

装饰器模式(Decorator) 装饰器模式是一种结构模式&#xff0c;通过装饰器模式可以在不改变原有类结构的情况下向一个新对象添加新功能&#xff0c;是现有类的包装。 图解 角色 抽象组件&#xff1a;定义组件的抽象方法具体组件&#xff1a;实现组件的抽象方法抽象装饰器&…

设计模式-代理模式Proxy(结构型)

代理模式&#xff08;Proxy&#xff09; 代理模式是一种结构型模式&#xff0c;它可以通过一个类代理另一个类的功能。代理类持有被代理类的引用地址&#xff0c;负责将请求转发给代理类&#xff0c;并且可以在转发前后做一些处理 图解 角色 抽象主题&#xff08;Subject&…

计算机网络(9) TCP超时重传以及滑动窗口流量控制

一.确认机制与流量控制 引用&#xff1a;滑动窗口&#xff0c;TCP的流量控制机制 | 小菜学网络 确认机制 由于 IP 协议缺乏反馈机制&#xff0c;为保证可靠性&#xff0c;TCP 协议规定&#xff1a;当接收方收到一个数据后&#xff0c;必须回复 ACK 给发送方。这样发送方就能得…

Python学习打卡:day04

day4 笔记来源于&#xff1a;黑马程序员python教程&#xff0c;8天python从入门到精通&#xff0c;学python看这套就够了 目录 day428、while 循环的嵌套应用29、while 循环案例 — 九九乘法表补充知识示例&#xff1a;九九乘法表 30、for 循环基本语法while 和 for 循环对比f…

react 自定义Hook的实现

// 问题&#xff1a;当前组件耦合在一起的不方便复用 // 解决思路&#xff1a;自定义hook// 1。封装use打头的函数 // 2.在函数体内封装我们可复用的逻辑&#xff08;只要是可复用的都行&#xff09; // 3.要把组件中用到的状态&#xff08;变量&#xff09;或者回调return出去…

使用tkinter创建带有图标的菜单栏

使用tkinter创建带有图标的菜单栏 效果代码代码解析创建主窗口加载图标创建菜单栏添加文件菜单添加带图标的菜单项 Tkinter 的默认菜单外观较为简单&#xff0c;可以通过自定义和添加图标&#xff0c;让菜单显示更好看。 效果 代码 import tkinter as tk from tkinter import …

父亲节|“鞋”守一生,致敬那些年父亲的默默付出

父亲节&#xff0c;是一个感谢父亲的节日。普遍认为的日期是每年6月的第三个星期日&#xff0c;在这一天世界上有52个国家和地区在过父亲节。同时注重孝道也是我们中华民族的传统文化。 在岁月的长河中&#xff0c; 父亲如同那坚实的基石&#xff0c; 承载着家庭的重担&#…