[大模型]Phi-3-mini-4k-instruct langchain 接入

news2024/12/24 11:20:16

环境准备

在 autodl 平台中租赁一个 3090 等 24G 显存的显卡机器,如下图所示镜像选择 PyTorch–>2.0.0–>3.8(ubuntu20.04)–>11.8 。

接下来打开刚刚租用服务器的 JupyterLab,并且打开其中的终端开始环境配置、模型下载和运行演示。

在这里插入图片描述

创建工作目录

创建本次phi3实践的工作目录/root/autodl-tmp/phi3

# 创建工作目录
mkdir -p /root/autodl-tmp/phi3

安装依赖

# 升级pip
python -m pip install --upgrade pip
# 更换 pypi 源加速库的安装
pip config set global.index-url https://pypi.tuna.tsinghua.edu.cn/simple

pip install fastapi==0.104.1
pip install uvicorn==0.24.0.post1
pip install requests==2.25.1
pip install modelscope==1.9.5
pip install streamlit==1.24.0
pip install sentencepiece==0.1.99
pip install accelerate==0.24.1
pip install langchain==0.1.15

由于phi3要求的transformers的版本为4.41.0.dev0版本

各位可以先通过下面命令查看你的Transformers包的版本

pip list |grep transformers

如果版本不对,可以通过下面命令升级

# phi3升级transformers为4.41.0.dev0版本
pip uninstall -y transformers && pip install git+https://github.com/huggingface/transformers

模型下载

使用 modelscope 中的napshot_download函数下载模型,第一个参数为模型名称,参数cache_dir为模型的下载路径。

在 /root/autodl-tmp 路径下新建download.py 文件并在其中输入以下内容,粘贴代码后记得保存文件,如下图所示。并运行python /root/autodl-tmp/download.py执行下载,模型大小为 8 GB,下载模型大概需要 10~15 分钟

#模型下载
from modelscope import snapshot_download
model_dir = snapshot_download('LLM-Research/Phi-3-mini-4k-instruct', cache_dir='/root/autodl-tmp/phi3', revision='master')

代码准备

为便捷构建 LLM 应用,我们需要基于本地部署的 Phi-3-mini-4k-instruct,自定义一个 LLM 类,将 Phi-3-mini-4k-instruct 接入到 LangChain 框架中。完成自定义 LLM 类之后,可以以完全一致的方式调用 LangChain 的接口,而无需考虑底层模型调用的不一致。

基于本地部署的 Phi-3-mini-4k-instruct 自定义 LLM 类并不复杂,我们只需从 LangChain.llms.base.LLM 类继承一个子类,并重写构造函数与 _call 函数即可。

我们新建一个py文件Phi3MiniLLM.py,写入以下内容:

from langchain.llms.base import LLM
from typing import Any, List, Optional
from langchain.callbacks.manager import CallbackManagerForLLMRun
from transformers import AutoTokenizer, AutoModelForCausalLM, GenerationConfig
import torch

class Phi3Mini_LLM(LLM):
    # 基于本地 Phi-3-mini 自定义 LLM 类
    tokenizer: AutoTokenizer = None
    model: AutoModelForCausalLM = None
        
    def __init__(self, mode_name_or_path :str):

        super().__init__()
        print("正在从本地加载模型...")
        self.tokenizer = AutoTokenizer.from_pretrained(mode_name_or_path, use_fast=False)
        self.model = AutoModelForCausalLM.from_pretrained(mode_name_or_path, device_map="cuda", 
        torch_dtype="auto", 
        trust_remote_code=True,)
        self.model.generation_config = GenerationConfig.from_pretrained(mode_name_or_path)
        self.model.generation_config.pad_token_id = self.model.generation_config.eos_token_id
        self.model = self.model.eval()
    
        print("完成本地模型的加载")

   
    
    def _call(self, prompt : str, stop: Optional[List[str]] = None,
                run_manager: Optional[CallbackManagerForLLMRun] = None,
                **kwargs: Any):
        messages = [
             {"role": "user", "content": prompt}
                    ]
          # 调用模型进行对话生成
        input_ids = self.tokenizer.apply_chat_template(conversation=messages, tokenize=True, add_generation_prompt=True, return_tensors='pt')
        output_ids = self.model.generate(input_ids.to('cuda'),max_new_tokens=2048)
   
        response = self.tokenizer.decode(output_ids[0][input_ids.shape[1]:], skip_special_tokens=True)
        return response
        
    @property
    def _llm_type(self) -> str:
        return "Phi3Mini_LLM"

代码运行

然后就可以像使用任何其他的langchain大模型功能一样使用了。在jupyter上运行

from Phi3MiniLLM import Phi3Mini_LLM
llm = Phi3Mini_LLM(mode_name_or_path = '/root/autodl-tmp/phi3/model/LLM-Research/Phi-3-mini-4k-instruct')
print(llm("你是谁"))

到这里,其实就已经把Phi-3-mini-4k-instruct 模型接入langchain了

在这里插入图片描述

通过langchain调用phi3-mini-4k-instruct 模型讲个故事

在这里插入图片描述

TODO

构建本地知识库数据。通过langchain搭建本地知识库小助手。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1821073.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

10大wordpress外贸主题

手动工具wordpress外贸模板 适合生产套筒扳、管钳、工具箱、斧子、锤子、防爆工具、螺丝刀、扳手等手动工具的厂家。 https://www.jianzhanpress.com/?p4806 Invisible Trade WP外贸网站模板 WordPress Invisible Trade外贸网站模板,做进出口贸易公司官网的word…

7-25 数字三角形问题

7-25 数字三角形问题 分数 10 全屏浏览 作者 夏仁强 单位 贵州工程应用技术学院 给定一个由n行数字组成的数字三角形如下图所示。试设计一个算法,计算出从三角形的顶至底的一条路径,使该路径经过的数字总和最大。 对于给定的由n行数字组成的数字三角…

【Spring】Spring事务相关源码分析

目录: 1.讲述事务的一些基础概念。 2.讲述事务的生命周期源码 3.配置事务,以及事务注解的源码 1.前言 具体事务中Spring是怎么管理事务,怎么去管理、创建、销毁等操作的呢?这一次来分解一下。 2.事务概述(复习&a…

MySQL的增删查改(CRUD)

目录 一.CRUD 1.什么是CRUD 2.CRUD的特点 二.新增(Create) 单列插入全行数据 表的复制 额外小知识 三.阅读(Read) 1.全表查询指定列查询 2.查询字段为表达式 3.别名 ​编辑 4.去重 5.排序 1.根据列名进行排序 2.使用表达式及别名进行排序…

读AI未来进行式笔记12读后总结与感想兼导读

1. 基本信息 AI未来进行式 李开复 陈楸帆 著 浙江人民出版社,2022年5月出版 1.1. 读薄率 书籍总字数301千字,笔记总字数39650字。 读薄率39650301000≈13.2% 1.2. 读厚方向 千脑智能 脑机穿越 未来呼啸而来 虚拟人 AI3.0 新机器人 人工不智能&#xff…

搜索与图论:染色法判别二分图

搜索与图论&#xff1a;染色法判别二分图 题目描述参考代码 题目描述 输入样例 4 4 1 3 1 4 2 3 2 4输出样例 Yes参考代码 #include <cstring> #include <iostream> #include <algorithm>using namespace std;const int N 100010, M 200010;int n, m; i…

[C][数据结构][排序][下][快速排序][归并排序]详细讲解

文章目录 1.快速排序1.基本思想2.hoare版本3.挖坑法4.前后指针版本5.非递归版本改写 2.归并排序 1.快速排序 1.基本思想 任取待排序元素序列的某元素作为基准值&#xff0c;按照该排序码将待排序集合分割成两子序列&#xff0c;左子序列中所有元素均小于基准值&#xff0c;右…

自然语言处理领域的重大挑战:解码器 Transformer 的局限性

每周跟踪AI热点新闻动向和震撼发展 想要探索生成式人工智能的前沿进展吗&#xff1f;订阅我们的简报&#xff0c;深入解析最新的技术突破、实际应用案例和未来的趋势。与全球数同行一同&#xff0c;从行业内部的深度分析和实用指南中受益。不要错过这个机会&#xff0c;成为AI领…

Undertow学习

Undertow介绍 Undertow是一个用java编写的灵活、高性能的web服务器&#xff0c;提供基于NIO的阻塞和非阻塞API。 Undertow有一个基于组合的体系结构&#xff0c;允许您通过组合小型单用途处理程序来构建web服务器。为您提供了在完整的Java EE servlet 4.0容器或低级别非阻塞处…

【JavaEE精炼宝库】多线程(5)单例模式 | 指令重排序 | 阻塞队列

目录 一、单例模式&#xff1a; 1.1 饿汉模式&#xff1a; 1.2 懒汉模式&#xff1a; 1.2.1 线程安全的懒汉模式&#xff1a; 1.2.2 线程安全的懒汉模式的优化&#xff1a; 二、指令重排序 三、阻塞队列 3.1 阻塞队列的概念&#xff1a; 3.2 生产者消费者模型&#xf…

计算机网络之网络层知识总结

网络层功能概述 主要任务 主要任务是把分组从源端传到目的端&#xff0c;为分组交换网上的不同主机提供通信服务。网络层传输单位是数据报。 分组和数据报的关系&#xff1a;把数据报进行切割之后&#xff0c;就是分组。 主要功能&#xff1a; 路由选择与分组转发 路由器…

ResNet——Deep Residual Learning for Image Recognition(论文阅读)

1.什么是ResNet ResNet是一种残差网络&#xff0c;咱们可以把它理解为一个子网络&#xff0c;这个子网络经过堆叠可以构成一个很深的网络。下面是ResNet的结构。 2.为什么要引入ResNet 理论上来说&#xff0c;堆叠神经网络的层数应该可以提升模型的精度。但是现实中真的是这…

SwiftUI中UIViewRepresentable的使用(UIKit与SwiftUI的桥梁)

UIViewRepresentable是一个协议&#xff0c;用于创建一个SwiftUI视图&#xff0c;该视图包装了一个UIKit视图。通过实现UIViewRepresentable协议&#xff0c;我们可以在SwiftUI中使用自定义的UIKit视图&#xff0c;并与SwiftUI进行交互。 实现UIViewRepresentable 创建一个遵…

DT浏览器很好用

简单的浏览器&#xff0c;又是强大的浏览器&#xff0c;界面简洁大方&#xff0c;操作起来非常流畅&#x1f60e;&#xff0c;几乎不会有卡顿的情况。 搜索功能也十分强大&#x1f44d;&#xff0c;能够快速精准地找到想要的信息。 而且还有出色的兼容性&#xff0c;各种网页都…

qt 实现模拟实际物体带速度的移动(水平、垂直、斜角度)——————附带完整代码

文章目录 0 效果1 原理1.1 图片旋转1.2 物体带速度移动 2 完整实现2.1 将车辆按钮封装为一个类&#xff1a;2.2 调用方法 3 完整代码参考 0 效果 实现后的效果如下 可以显示属性&#xff08;继承自QToolButton&#xff09;: 鼠标悬浮显示文字 按钮显示文字 1 原理 类继承…

单链表经典算法题 1

前言 学习了单链表&#xff0c;我们就做一些题来巩固一下。还有就是解题方法不唯一&#xff0c;我就只讲述为自己的方法。 目录 前言 1.移除链表元素 思路 代码 2.反转链表 思路 代码 3.链表的中间节点 思路 代码 总结 1.移除链表元素 思路 我们创建一个新的表…

FM全网自动采集聚合影视搜索源码

源码介绍 FM 全网聚合影视搜索(响应式布局)&#xff0c;基于 TP5.1 开发的聚合影视搜索程序&#xff0c;本程序无数据库&#xff0c;本程序内置P2P 版播放器&#xff0c;承诺无广告无捆绑。片源内部滚动广告与本站无关,谨防上当受骗&#xff0c;资源搜索全部来自于网络。 环境…

Java面向对象之static关键字,可变参数,递归,数组常见算法,对象数组,方法参数

第一章.static关键字 1.static的介绍以及基本使用 1.概述:static是一个静态关键字 2.使用:a.修饰一个成员变量:static 数据类型 变量名b.修饰一个方法:修饰符 static 返回值类型 方法名(形参){方法体return 结果}3.调用静态成员:类名直接调用(不用new对象)4.静态成员特点:a.静…

智慧守护 畅游无忧——北斗应急呼叫柱,为景区安全加码

在大自然的怀抱中&#xff0c;中型及大型公园、景区以其壮丽风光吸引着成千上万的游客前来探索&#xff0c;成为了人们休闲娱乐的好去处。然而&#xff0c;广袤的区域、复杂的地形和分散的人流也给安全保障带来了前所未有的挑战。传统的巡逻方式难以覆盖每一个角落&#xff0c;…

2.nginx常用命令

使用nginx命令需要进入nginx目录里面执行。 /usr/local/nginx/sbin/ 查看nginx的版本号 启动nginx ./nginx 关闭nginx ./nginx -s stop 查看nginx的是否运行的命令 重新加载nginx 针对配置目录中配置文件nginx.cnf修改后需要重新加载 /usr/local/nginx/conf/nginx.cnf …