论文笔记:ATime-Aware Trajectory Embedding Model for Next-Location Recommendation

news2025/1/15 13:02:07

Knowledge and Information Systems, 2018

1 intro

1.1 背景

  • 随着基于位置的社交网络(LBSNs),如Foursquare和Facebook Places的日益流行,大量用户签到数据变得可用
    • 这些大量签到数据的可用性带来了许多有用的应用,以提升基于位置服务的用户体验
    • 其中一个任务是新兴的下一个位置推荐
  • 下一个位置推荐根据用户过去的签到记录,预测可能访问的后续位置
    • 时间信息在这个任务中扮演了重要角色
      • 例如,如果访问时间是工作日的早晨,用户从“家”开始访问“地铁”,然后“办公室”(或工作地点)应该是对这位用户的合适推荐
      • 如果访问时间是周末,则应推荐放松的地点

1.2 现有的工作

  • 现有的下一个位置推荐研究主要基于马尔可夫链属性模型连续签到之间的序列转换模式。
    • 由于数据稀疏性和计算复杂性,序列转换限制于一阶转换,无法捕捉更长的序列上下文。
    • 更重要的是,推荐任务中缺乏对多种时间因素的全面和深入考虑。
  • 在现有研究中,用户偏好通常被视为静态的,这并不反映用户兴趣的演变特征
    • 例如,学生可能在学期期间更频繁地在大学签到,而在作为某公司夏季实习生时则更频繁地在工作场所签到
      • ——>她的签到行为在不同时间段内发生变化
  • 现有研究也忽略了周期性模式
    • 例如,在工作日,用户可能早上在办公室签到,晚上在家签到

1.3 下一位置推荐的挑战性

  • 首先,如上例所示,用户的签到行为会随时间改变
  • 其次,即使我们能够根据用户推导出访问模式(例如,周末“家”→“商店”→“午餐”→“商店”→“晚餐”),仍然很难推断出每个模式的确切位置
    • 因为多个候选位置可能适合
      • 晚餐的下一个位置应基于多种考虑生成,包括自己的偏好、之前访问过的地点和其他时间因素

1.4 论文思路

  • 提出了一个新颖的时间感知轨迹嵌入模型(TA-TEM)

2 轨迹观察

  • 如之前的论文所言,序列影响是轨迹数据中最重要的时间因素之一,即用户连续签到点之间存在马尔可夫链特性。
  • 论文研究实际轨迹数据上的另外两种时间因素。

2.1 数据集

  • 三个公共地理社交网络数据集,每个数据集包含一年的签到数据

仅报告Gowalla数据集的结果,其他两个数据集的观察结果类似

2.2  观察1:用户对签到的偏好会随着长时间周期(例如,一个月)的变化而变化

  • 直观地说,用户的兴趣可能会在一段时间后发生变化(例如,一个月),这可能导致不同时间段的访问行为不同
  • 给定一个用户u,论文通过计算两个连续时间周期中u访问的位置集合的Jaccard相似度的平均值来计算重叠比率值(ORV)。
    • 设置一个时间周期为一个月
      • 在上述等式中,L(u,i)是用户u在第i个月访问的位置集合
      • 选择签到记录最多的前1000名用户,然后计算这些用户的平均ORV
  • 平均ORV是0.035(±0.002)
  • ——>小的Jaccard相似性值表明,在连续两个月中用户的签到位置之间的重叠很少。
    • 换句话说,用户对签到行为的偏好在长时间周期内会发生变化

2.3 观察2:周期性签到模式显著

  • 直观地说,用户可能有一些规律的日常和周常活动,如中午吃饭和周末放松。
    • 因此,位置的生成很可能会受到相应时间信息的影响,如一天中的小时和一周中的天
  • 周常模式:
    • 将轨迹分成按天的多个间隔,然后将所有用户在第i个间隔访问的位置组合成一个位置集合L(i)【一个簇】
      • 计算这七个簇中两个位置集合的平均内部和外部相似性
      • 内部和外部表示位置集合来自同一个和不同的簇
      • 使用Jaccard系数来测量两个位置集合之间的相似性

  • 对角线条目的Jaccard系数显著高于非对角线条目
    • ——>在一周内同一时间索引生成的两个位置集合比不同时间索引的更相似 
  • 基于小时索引进行类似的分析,结果绘制在图2(b)中,发现用户轨迹显示出有趣的时间模式

3 方法

3.1 轨迹嵌入:基本模型

  • 类似于word2vec
  • 位置j,窗口大小2K的上下文嵌入:
  • 轨迹t的目标函数

3.2 整合用户偏好变化

  • 用户在签到时的偏好可能随时间变化(见观察1)
  • 为了建模这一因素,论文将签到分为若干个月份,并假设用户u在第m个月与一个独特的人格vum​相关联。
    • 这里使用“人格”一词是为了反映用户随时间变化的偏好。
    • 除了偏好变化外,还假设用户对位置有一个相对稳定的总体偏好,这有助于生成常去的地点,如工作场所和家

3.3 整合周期性模式

  • 周期性签到模式描绘了观察2中提到的每周和每日的移动模式
  • 当用户生成轨迹时,他的行为不仅受到自己的偏好影响,还受到周期性偏好的影响。
  • 设hj和dt分别为轨迹t中第j个位置的一天中的小时索引和一周中的天索引。形式上,我们有:

3.4 TA-TEM 模型

目标函数更新为:

位置lj的上下文嵌入为:

3.5 推荐位置排名

一旦所有嵌入向量都学习完成,我们按以下方式生成下一个位置推荐

  • 给定用户u的前K个签到1,2,…,K1和下一个时间戳sK+1​(对应于月份m、天d和小时h),使用以下函数来排名候选位置L:

4 实验

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1819609.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

Perl 语言入门学习

一、介绍 Perl 是一种高级的、动态的、解释型的通用编程语言,由Larry Wall于1987年开发。它是一种非常灵活和强大的语言,广泛用于文本处理、系统管理、网络编程、图形编程等领域。 Perl 语言的设计理念是“用一种简单的语法,去解决复杂的编…

基于注意力的MIL

多实例学习是监督学习的一种变体,其中单个类标签被分配给一袋实例。在本文中,作者将MIL问题描述为学习bag标签的伯努利分布,其中bag标签概率通过神经网络完全参数化。此外,提出了一种基于神经网络的置换不变聚合算子,该…

Spring Security——基于MyBatis

目录 项目总结 新建一个项目 pom.xml application.properties配置文件 User实体类 UserMapper映射接口 UserService访问数据库中的用户信息 WebSecurityConfig配置类 MyAuthenticationFailureHandler登录失败后 MyAuthenticationSuccessHandlerw登录成功后 WebSecur…

嘉之音真丝彩绘吸音画,把记忆与向往刻进艺术里

那一瞬间定格在记忆中 那一刹那感动到骨髓里 曾经 现在 将来 每一幅画,都是一个故事的开始,一段记忆的延续,它们承载着过去,映照着现在,启迪着未来。在艺术的世界里,每个人都能找到属于自己的那一幅画…

PyTorch -- Visdom 快速实践

安装:pip install visdom 注:如果安装后启动报错可能是 visdom 版本选择问题 启动:python -m visdom.server 之后打开出现的链接 http://localhost:8097Checking for scripts. Its Alive! INFO:root:Application Started INFO:root:Working…

pytorch神经网络训练(AlexNet)

导包 import osimport torchimport torch.nn as nnimport torch.optim as optimfrom torch.utils.data import Dataset, DataLoaderfrom PIL import Imagefrom torchvision import models, transforms 定义自定义图像数据集 class CustomImageDataset(Dataset): 定义一个自…

数据采集项目1-用户行为数据同步

环境准备 linux配置、克隆103和104、编写集群分发脚本、ssh无密码登录配置、jdk安装、数据模拟集群日志数据输出脚本、xcall脚本、安装hadoop、zk安装、kafka安装、flume安装、mysql安装、maxwell安装、datax安装、hive安装 用户行为数据同步-总的数据流程图 第一层flume 数据…

22 CRT工具安装流程

22 CRT工具安装流程 SecureCRT 9.5 说明书 SecureCRT 9.5是一款由VanDyke Software开发的终端仿真程序。它为Windows、Mac和Linux操作系统提供了强大的SSH(Secure Shell)客户端功能。SecureCRT 9.5提供了对Telnet、RLogin、Serial和X.509等协议的支持&…

没那么简单!浅析伦敦金与美元的关系

伦敦金价与美元的关系可以被比喻为跷跷板的两端,它们的价格走势往往呈现出此消彼长的关系:当美元表现强势的时候,伦敦金的价格可能承受到压力;相反,当美元疲软时,黄金往往会成为避险资产,令伦敦…

Flask快速入门(路由、CBV、请求和响应、session)

Flask快速入门(路由、CBV、请求和响应、session) 目录 Flask快速入门(路由、CBV、请求和响应、session)安装创建页面Debug模式快速使用Werkzeug介绍watchdog介绍快速体验 路由系统源码分析手动配置路由动态路由-转换器 Flask的CBV…

你还在手写数据库文档?推荐一款数据库文档生成工具screw

😄 19年之后由于某些原因断更了三年,23年重新扬帆起航,推出更多优质博文,希望大家多多支持~ 🌷 古之立大事者,不惟有超世之才,亦必有坚忍不拔之志 🎐 个人CSND主页——Mi…

【调试笔记-20240612-Linux-在 QEMU 中配置 OpenWrt-23.05 支持访问 Windows 宿主机的共享目录】

调试笔记-系列文章目录 调试笔记-20240612-Linux-在 QEMU 中配置 OpenWrt-23.05 支持访问 Windows 宿主机的共享目录 文章目录 调试笔记-系列文章目录调试笔记-20240612-Linux-在 QEMU 中配置 OpenWrt-23.05 支持访问 Windows 宿主机的共享目录 前言一、调试环境操作系统&…

UEditor文件上传超出大小限制修改无效问题

网上说的方法,试过了,不生效 百度ueditor富文本编辑框怎么设置上传图片大小限制_umeditor 控制图片上传不得超过1m-CSDN博客 直接修改此处

[图解]《分析模式》漫谈02-第2章图的多重性错误

1 00:00:01,400 --> 00:00:02,790 今天,我们来看 2 00:00:04,440 --> 00:00:06,190 分析模式的第2章 3 00:00:06,960 --> 00:00:09,820 一个图上面的一些小问题 4 00:00:13,130 --> 00:00:15,320 第2章的图2.4 5 00:00:16,500 --> 00:00:22,190 …

美丽的拉萨,神奇的布达拉宫

原文链接:美丽的拉萨,神奇的布达拉宫 2022年11月30日,可能将成为一个改变人类历史的日子——美国人工智能开发机构OpenAI推出了聊天机器人ChatGPT-3.5,将人工智能的发展推向了一个新的高度。2023年11月7日,OpenAI首届…

Cloudflare 错误 1006、1007、1008 解决方案 | 如何修复

根据不完全统计,使用 Cloudflare 的网站比例已经接近 20%。因此,在日常工作中,比如进行网页抓取时,您可能经常会遇到一些因 Cloudflare 而产生的困难。例如,遇到 Cloudflare 错误 1006、1007 和 1008,这些错…

Windows下基于Frida查看内存基址和修改寄存器

使用Frida能够方便地获取到DLL基址,还能修改寄存器值。首先要通过任务管理器获得进程的PID,然后写Python脚本把Frida附加到这个PID进程,根据IDA分析出来的函数地址,HOOK到目标函数,修改寄存器的值,最终实现…

PHP聚合通多平台支付平台源码

源码介绍 php聚合通多平台支付平台源码,源码搭建了一下,这个源码不复杂,修改一下数据库账号密码然后导入数据库就可以,和网站恢复备份一样简单! 源码截图 源码下载 PHP聚合通多平台支付平台源码

vite配置unocss

在vue3vitetseslintprettierstylelinthuskylint-stagedcommitlintcommitizencz-git介绍了关于vitevue工程化搭建,现在在这个基础上,我们增加一下unocss unocss官方文档 具体开发中使用遇到的问题可以参考不喜欢原子化CSS得我,还是在新项目中使…

C++面向对象:多态性

多态性 1.概念 多态性是面向对象的程序设计的一个重要特征。在面向对象的方法中一般是这样表述多态的:向不同的对象发送同一个信息,不同的对象在接收时会产生不同的行为。也就是说,每个对象用自己的方式去响应共同的消息。 2.典例 下面这…