【机器学习】QLoRA:基于PEFT亲手微调你的第一个AI大模型

news2024/11/23 17:03:18

目录

一、引言

二、量化与微调—原理剖析

2.1 为什么要量化微调?

2.2 量化(Quantization)

2.2.1 量化原理

2.2.2 量化代码

2.3 微调(Fine-Tuning)

2.3.1 LoRA

2.3.2 QLoRA

三、量化与微调—实战演练:以Qwen2为例,亲手微调你的第一个AI大模型

3.1 模型预处理—依赖安装、库包导入、模型下载

3.2 模型预处理—加载量化模型

3.3 模型预处理—加载LoRA网络

3.4 数据预处理—下载、处理数据 

3.5 模型训练 

3.6 模型合并及推理

四、总结


一、引言

之前陆续写了Qwen1.5、Qwen2.0、GLM-4等国产开源大模型的原理、训练及推理相关的文章,每一篇都拿到了热榜第一,但其中训练部分均基于Llama-factory框架,对于工程师而言,最喜欢的就是刨根问底,使用中间层的训练框架,还是少一些“安全感”。今天我们抛开中间框架,深入底层,一步一步带大家微调一个大模型。

二、量化与微调—原理剖析

2.1 为什么要量化微调?

量化微调要解决的问题:全参数、高比特(32bit或16bit)微调训练需要大量的GPU显存资源,于是通过缩减参数位数(Quantization)以及缩减可训练参数规模(LoRA)等策略降低训练成本,达到全参数微调同等的效果。

如上图,针对一个7B的模型,全参数16位微调,需要60G显存,QLoRA4位微调仅需6GB,仅需要1/10。面对昂贵的GPU资源,量化微调技术真的是“知识解放生产力”的典范。下面分别讲解量化和微调的原理。

2.2 量化(Quantization)

2.2.1 量化原理

向量量化:int8/int4

通俗将就是将float16位浮点型转换为int8位整型,可以分为“0点量化zero-point”和“最大绝对值absmax”量化,下图是“最大绝对值absmax”量化的示例。

我们计划量化至int8的范围为[-127,127]:

  1. 取fp16向量的最大值5.4,127除以5.4得到23.5,作为缩放因子
  2. fp16向量的所有数乘以23.5得到int8的向量

反量化为FP16:

  1. 将int8的项链除以缩放因子23.5

矩阵量化(0退化)

经过证明,量化的损失是由离群点(偏离整体分布的点)特征导致的,于是设定一个异常阈值,将大于阈值的列抽离出来维持fp16,对小于异常阈值的矩阵进行量化计算,可以保证精度不丢失。官方动图如下:

抽取线性矩阵W、X的非离群值量化为int8:

  1. 从输入的隐含状态中,按列提取异常值 (即大于某个阈值的值)。
  2. 对 FP16 离群值矩阵和 Int8 非离群值矩阵分别作矩阵乘法。

反量化为FP16:

  1. 反量化非离群值的矩阵乘结果并其与离群值矩阵乘结果相加,获得最终的 FP16 结果。 

2.2.2 量化代码

bitsandbytes库:量化任何模型的最简单方法之一,与GGUF均属于零样本量化,不需要量化校准数据及校准过程(而AWQ和GPTQ等量化方啊均需要少量样本进行校准) 。任何模型只要含有 torch.nn.Linear 模块,就可以对其进行开箱即用的量化。

nf4/fp4量化代码,很简单,仅需要一个BitsAndBytesConfig配置即可使用。

from transformers import AutoTokenizer, AutoModelForCausalLM,BitsAndBytesConfig
###int4量化配置
quantization_config = BitsAndBytesConfig(
    load_in_4bit=True,  # 或者 load_in_8bit=True,根据需要设置
    #llm_int8_threshold=6.0,
    #llm_int8_has_fp16_weight=False,
    bnb_4bit_compute_dtype=torch.float16,
    bnb_4bit_quant_type="nf4",#添加nf4配置,去掉为fp4
    bnb_4bit_use_double_quant=True,#添加nf4配置,去掉为fp4
)
model = AutoModelForCausalLM.from_pretrained(model_dir,device_map=device,trust_remote_code=True,torch_dtype=torch.float16,quantization_config=quantization_config)
print(model)

输出模型结构,可以看到Attention和MLP层中的Linear线性层全部变成了linear4bit:

Qwen2ForCausalLM(
  (model): Qwen2Model(
    (embed_tokens): Embedding(152064, 3584)
    (layers): ModuleList(
      (0-27): 28 x Qwen2DecoderLayer(
        (self_attn): Qwen2SdpaAttention(
          (q_proj): Linear4bit(in_features=3584, out_features=3584, bias=True)
          (k_proj): Linear4bit(in_features=3584, out_features=512, bias=True)
          (v_proj): Linear4bit(in_features=3584, out_features=512, bias=True)
          (o_proj): Linear4bit(in_features=3584, out_features=3584, bias=False)
          (rotary_emb): Qwen2RotaryEmbedding()
        )
        (mlp): Qwen2MLP(
          (gate_proj): Linear4bit(in_features=3584, out_features=18944, bias=False)
          (up_proj): Linear4bit(in_features=3584, out_features=18944, bias=False)
          (down_proj): Linear4bit(in_features=18944, out_features=3584, bias=False)
          (act_fn): SiLU()
        )
        (input_layernorm): Qwen2RMSNorm()
        (post_attention_layernorm): Qwen2RMSNorm()
      )
    )
    (norm): Qwen2RMSNorm()
  )
  (lm_head): Linear(in_features=3584, out_features=152064, bias=False)
)

2.3 微调(Fine-Tuning)

2.3.1 LoRA

核心思想:通过低秩分解来模拟参数的改变量,以极小的参数来实现大模型的间接训练。

如下图,涉及到矩阵相乘的模块,比如transformers中的Q、K、V线性模块,在原始的权重旁边增加两个低维度的小矩阵A、B,通过前后两个矩阵A、B相乘,第一个矩阵A负责降维,第二个矩阵B负责升维,中间层维度为r,为了将维度还原。

假设原始维度为d,这样就将d*d降为d*r+r*d

  • 训练:只更新新增的A、B两个小矩阵参数
  • 推理:将原矩阵W与A、B两个小矩阵乘积BA加起来作为结果h=Wx+BAx=(W+BA)x,对于推理来说,不增加额外资源

代码很简单,还是一个配置文件LoraConfig:

from peft import LoraConfig,get_peft_model
config = LoraConfig(
    r=32,
    lora_alpha=16,
    target_modules=["q_proj", "k_proj", "v_proj", "o_proj", "gate_proj", "up_proj","down_proj"],
    lora_dropout=0.05,
    bias="none",
    task_type="CAUSAL_LM",
)
model = get_peft_model(model, config)
print(model)
  1. 引用peft(Parameter-Efficient Fine-Tuning)库
  2. 配置Lora配置文件LoraConfig
  3. 通过peft封装的get_peft_model方法将LoraConfig应用于model

查看模型结构会发现原有的Linear4bit结构,如q_proj:

(q_proj): Linear4bit(in_features=3584, out_features=3584, bias=True)

变成了:

(q_proj): lora.Linear4bit(
  (base_layer): Linear4bit(in_features=3584, out_features=3584, bias=True)
  (lora_dropout): ModuleDict(
    (default): Dropout(p=0.05, inplace=False)
  )
  (lora_A): ModuleDict(
    (default): Linear(in_features=3584, out_features=32, bias=False)
  )
  (lora_B): ModuleDict(
    (default): Linear(in_features=32, out_features=3584, bias=False)
  )
  (lora_embedding_A): ParameterDict()
  (lora_embedding_B): ParameterDict()
)

在Linear4bit基础上,新增了

  • lora_dropout:用于防止过拟合
  • Lora_A和Lora_B的ModuleDict:其中A的out_features与B的in_features相同,都为r=32
  • Lora_A和Lora_B的embedding层

对["q_proj", "k_proj", "v_proj", "o_proj", "gate_proj", "up_proj","down_proj"]等7个Linear4bit量化后的完整模型结构如下

PeftModelForCausalLM(
  (base_model): LoraModel(
    (model): Qwen2ForCausalLM(
      (model): Qwen2Model(
        (embed_tokens): Embedding(152064, 3584)
        (layers): ModuleList(
          (0-27): 28 x Qwen2DecoderLayer(
            (self_attn): Qwen2SdpaAttention(
              (q_proj): lora.Linear4bit(
                (base_layer): Linear4bit(in_features=3584, out_features=3584, bias=True)
                (lora_dropout): ModuleDict(
                  (default): Dropout(p=0.05, inplace=False)
                )
                (lora_A): ModuleDict(
                  (default): Linear(in_features=3584, out_features=32, bias=False)
                )
                (lora_B): ModuleDict(
                  (default): Linear(in_features=32, out_features=3584, bias=False)
                )
                (lora_embedding_A): ParameterDict()
                (lora_embedding_B): ParameterDict()
              )
              (k_proj): lora.Linear4bit(
                (base_layer): Linear4bit(in_features=3584, out_features=512, bias=True)
                (lora_dropout): ModuleDict(
                  (default): Dropout(p=0.05, inplace=False)
                )
                (lora_A): ModuleDict(
                  (default): Linear(in_features=3584, out_features=32, bias=False)
                )
                (lora_B): ModuleDict(
                  (default): Linear(in_features=32, out_features=512, bias=False)
                )
                (lora_embedding_A): ParameterDict()
                (lora_embedding_B): ParameterDict()
              )
              (v_proj): lora.Linear4bit(
                (base_layer): Linear4bit(in_features=3584, out_features=512, bias=True)
                (lora_dropout): ModuleDict(
                  (default): Dropout(p=0.05, inplace=False)
                )
                (lora_A): ModuleDict(
                  (default): Linear(in_features=3584, out_features=32, bias=False)
                )
                (lora_B): ModuleDict(
                  (default): Linear(in_features=32, out_features=512, bias=False)
                )
                (lora_embedding_A): ParameterDict()
                (lora_embedding_B): ParameterDict()
              )
              (o_proj): lora.Linear4bit(
                (base_layer): Linear4bit(in_features=3584, out_features=3584, bias=False)
                (lora_dropout): ModuleDict(
                  (default): Dropout(p=0.05, inplace=False)
                )
                (lora_A): ModuleDict(
                  (default): Linear(in_features=3584, out_features=32, bias=False)
                )
                (lora_B): ModuleDict(
                  (default): Linear(in_features=32, out_features=3584, bias=False)
                )
                (lora_embedding_A): ParameterDict()
                (lora_embedding_B): ParameterDict()
              )
              (rotary_emb): Qwen2RotaryEmbedding()
            )
            (mlp): Qwen2MLP(
              (gate_proj): lora.Linear4bit(
                (base_layer): Linear4bit(in_features=3584, out_features=18944, bias=False)
                (lora_dropout): ModuleDict(
                  (default): Dropout(p=0.05, inplace=False)
                )
                (lora_A): ModuleDict(
                  (default): Linear(in_features=3584, out_features=32, bias=False)
                )
                (lora_B): ModuleDict(
                  (default): Linear(in_features=32, out_features=18944, bias=False)
                )
                (lora_embedding_A): ParameterDict()
                (lora_embedding_B): ParameterDict()
              )
              (up_proj): lora.Linear4bit(
                (base_layer): Linear4bit(in_features=3584, out_features=18944, bias=False)
                (lora_dropout): ModuleDict(
                  (default): Dropout(p=0.05, inplace=False)
                )
                (lora_A): ModuleDict(
                  (default): Linear(in_features=3584, out_features=32, bias=False)
                )
                (lora_B): ModuleDict(
                  (default): Linear(in_features=32, out_features=18944, bias=False)
                )
                (lora_embedding_A): ParameterDict()
                (lora_embedding_B): ParameterDict()
              )
              (down_proj): lora.Linear4bit(
                (base_layer): Linear4bit(in_features=18944, out_features=3584, bias=False)
                (lora_dropout): ModuleDict(
                  (default): Dropout(p=0.05, inplace=False)
                )
                (lora_A): ModuleDict(
                  (default): Linear(in_features=18944, out_features=32, bias=False)
                )
                (lora_B): ModuleDict(
                  (default): Linear(in_features=32, out_features=3584, bias=False)
                )
                (lora_embedding_A): ParameterDict()
                (lora_embedding_B): ParameterDict()
              )
              (act_fn): SiLU()
            )
            (input_layernorm): Qwen2RMSNorm()
            (post_attention_layernorm): Qwen2RMSNorm()
          )
        )
        (norm): Qwen2RMSNorm()
      )
      (lm_head): Linear(in_features=3584, out_features=152064, bias=False)
    )
  )
)

2.3.2 QLoRA

聪明的人已经想到了,将上文讲到的Quantization与Lora结合,不就是QLoRA吗。

  • 在训练模型的时候,将Linear层转换为Linear4bit
  • 对Linear4bit量化层添加A、B两个低秩为r的小矩阵
  • 这两个小矩阵的权重通过量化权重的反向传播梯度进行微调

在LoRA的基础上,QLoRA关键做了3点创新:

  • NF4(4bit NormalFloat):改进的4位量化法,确保每个量化箱中的值数量相等。
  • 双量化:对第一次量化后的那些常量再进行一次量化,减少存储空间。
  • 分页优化器:使用Nvidia内存分页,在GPU资源不足的情况下,使用CPU计算

回忆一下上面量化部分BitsAndBytesConfig的代码,是不是很熟悉:

quantization_config = BitsAndBytesConfig(
    load_in_4bit=True,  # 或者 load_in_8bit=True,根据需要设置
    #llm_int8_threshold=6.0,
    #llm_int8_has_fp16_weight=False,
    llm_int8_enable_fp32_cpu_offload=True,
    bnb_4bit_compute_dtype=torch.float16,
    bnb_4bit_quant_type="nf4",#添加nf4配置,去掉为fp4
    bnb_4bit_use_double_quant=True,#添加nf4配置,去掉为fp4
)

三、量化与微调—实战演练:以Qwen2为例,亲手微调你的第一个AI大模型

3.1 模型预处理—依赖安装、库包导入、模型下载

from modelscope import snapshot_download
model_dir = snapshot_download('qwen/Qwen2-7B-Instruct')

import torch
import torch.nn as nn
import transformers
from datasets import load_dataset,load_from_disk
from transformers import AutoTokenizer, AutoModelForCausalLM,BitsAndBytesConfig

from peft import LoraConfig,get_peft_model,prepare_model_for_kbit_training

这里还是

  • 使用modelscope下载模型,
  • 使用transformers的自动分词器(AutoTokenizer)、自动模型库(AutoModelForCausalLM)、量化配置(BitsAndBytesConfig)等处理模型,
  • 使用dataset处理数据,
  • 使用peft加载lora配置并进行微调
  • 以及离不开的torch。

回忆一下安装conda环境以及pip依赖包的方法

conda create -n train_llm python
conda activate train_llm

pip install transformers,modelscope,peft,torch,datasets,accelerate,bitsandbytes -i https://mirrors.cloud.tencent.com/pypi/simple

3.2 模型预处理—加载量化模型

采用BitsAndBytesConfig配置量化参数,采用AutoModelForCausalLM加载量化参数

device = "auto" # the value needs to be a device name (e.g. cpu, cuda:0) or 'auto', 'balanced', 'balanced_low_0', 'sequential'

###int4量化配置
quantization_config = BitsAndBytesConfig(
    load_in_4bit=True,  # 或者 load_in_8bit=True,根据需要设置
    #llm_int8_threshold=6.0,
    #llm_int8_has_fp16_weight=False,
    llm_int8_enable_fp32_cpu_offload=True,
    bnb_4bit_compute_dtype=torch.float16,#虽然我们以4位加载和存储模型,但我们在需要时会部分反量化他,并以16位精度进行计算
    bnb_4bit_quant_type="nf4",#nf量化类型
    bnb_4bit_use_double_quant=True,#双重量化,量化一次后再量化,进一步解决显存
)
model = AutoModelForCausalLM.from_pretrained(model_dir,device_map=device,trust_remote_code=True,torch_dtype=torch.float16,quantization_config=quantization_config)
tokenizer = AutoTokenizer.from_pretrained(model_dir,trust_remote_code=True,padding_side="right",use_fast=False)

print(model)

3.3 模型预处理—加载LoRA网络

from peft import LoraConfig,get_peft_model,prepare_model_for_kbit_training

model = prepare_model_for_kbit_training(model)
config = LoraConfig(
    r=32,
    lora_alpha=16,
    target_modules=["q_proj", "k_proj", "v_proj", "o_proj", "gate_proj", "up_proj","down_proj"],
    lora_dropout=0.05,
    bias="none",
    task_type="CAUSAL_LM",
)
model = get_peft_model(model, config)
print(model)
  • 采用prepare_model_for_kbit_training对norm和LM head层进行处理,提升训练稳定性(非常必要,否则会报显存不足的错误):
    • layer norm 层保留 FP32 精度
    • embedding层以及 LM head 输出层保留 FP32 精度 
  • 采用get_peft_model为模型添加lora层

3.4 数据预处理—下载、处理数据 

这里采用huggingface上的Abirate/english_quotes数据集,我这里由于网络环境原因,手动下载保存至./目录。

data = load_dataset('json',data_files="./quotes.jsonl")
data = data.map(lambda samples: tokenizer(samples["quote"]), batched=True)
print(data)

数据集样例(这里为例调试,实际请替换自己的数据集。): 

通过tokenizer和data.map将每一行quote中的数据分词处理为input_ids。输出为

3.5 模型训练 

经过包导入、模型量化、模型lora、数据预处理,重要到了第5步:模型训练

trainer = transformers.Trainer(
    model=model,
    train_dataset=data["train"],
    args=transformers.TrainingArguments(
        per_device_train_batch_size=4,
        gradient_accumulation_steps=4,
        warmup_steps=10,
        max_steps=50,
        learning_rate=3e-4,
        fp16=True,
        logging_steps=1,
        output_dir="outputs/checkpoint-1"+time_str,
        optim="paged_adamw_8bit",
        save_strategy = 'steps',
        save_steps = 10,
    ),
    data_collator=transformers.DataCollatorForLanguageModeling(tokenizer, mlm=False),
)

model.config.use_cache = False  # silence the warnings. Please re-enable for inference!
trainer.train()

trainer.save_model(trainer.args.output_dir)

采用transformers的训练器Trainer,输入qlora模型、数据、训练参数、数据收集器等参数,启动训练。

Qwen2-7B-Instruct模型按以上参数训练占用显存约20G。 

3.6 模型合并及推理

以上是一段模型合并推理测试代码,主要包括

  1. 导入peft内的PeftModel模型类和PeftConfig配置类
  2. 通过trainer.args.output_dir获取微调模型目录peft_model_dir
  3. 获取微调后的模型配置config
  4. 加载基座模型
  5. 通过PeftModel.from_pretrained(model,peft_model_dir)将基座模型与微调模型合并
  6. 模型推理,同使用基座模型一样!
import torch
from peft import PeftModel, PeftConfig
from transformers import AutoModelForCausalLM, AutoTokenizer

peft_model_dir = trainer.args.output_dir
config = PeftConfig.from_pretrained(peft_model_dir)
print(config)
model = AutoModelForCausalLM.from_pretrained(
    config.base_model_name_or_path, return_dict=True,  device_map=device,
    torch_dtype=torch.float16, quantization_config=quantization_config
)
tokenizer = AutoTokenizer.from_pretrained(config.base_model_name_or_path)

# Load the Lora model
model = PeftModel.from_pretrained(model, peft_model_dir)

print(model)
# 模拟对话
prompt = "详细介绍一下大语言模型,评价下与深度学习的差异"
messages = [
    {"role": "system", "content": "你是一个智能助理."},
    {"role": "user", "content": prompt}
]
text = tokenizer.apply_chat_template(
    messages,
    tokenize=False,
    add_generation_prompt=True
)
model_inputs = tokenizer([text], return_tensors="pt").to(model.device)

gen_kwargs = {"max_length": 512, "do_sample": True, "top_k": 1}
with torch.no_grad():
    outputs = model.generate(**model_inputs, **gen_kwargs)
    outputs = outputs[:, model_inputs['input_ids'].shape[1]:] #切除system、user等对话前缀
    print(tokenizer.decode(outputs[0], skip_special_tokens=True))

推理所用显存:约15G

推理结果(本文仅为跑通流程,不提供涉及业务的任何相关数据,各位可以根据自己实际情况替换3.4的数据部分):

3.7 附:完整代码

from datetime import datetime
now = datetime.now()
time_str = now.strftime('%Y-%m-%d %H:%M:%S')
print(time_str)

from modelscope import snapshot_download
model_dir = snapshot_download('qwen/Qwen2-7B-Instruct')

import torch
import torch.nn as nn
import transformers
from datasets import load_dataset,load_from_disk
from transformers import AutoTokenizer, AutoModelForCausalLM,BitsAndBytesConfig


device = "auto" # the value needs to be a device name (e.g. cpu, cuda:0) or 'auto', 'balanced', 'balanced_low_0', 'sequential'

###int4量化配置
quantization_config = BitsAndBytesConfig(
    load_in_4bit=True,  # 或者 load_in_8bit=True,根据需要设置
    #llm_int8_threshold=6.0,
    #llm_int8_has_fp16_weight=False,
    llm_int8_enable_fp32_cpu_offload=True,
    bnb_4bit_compute_dtype=torch.float16,#虽然我们以4位加载和存储模型,但我们在需要时会部分反量化他,并以16位精度进行计算
    bnb_4bit_quant_type="nf4",#nf量化类型
    bnb_4bit_use_double_quant=True,#双重量化,量化一次后再量化,进一步解决显存
)
model = AutoModelForCausalLM.from_pretrained(model_dir,device_map=device,trust_remote_code=True,torch_dtype=torch.float16,quantization_config=quantization_config)
tokenizer = AutoTokenizer.from_pretrained(model_dir,trust_remote_code=True,padding_side="right",use_fast=False)
model.gradient_checkpointing_enable

print(model)

def print_trainable_parameters(model):
    """
    Prints the number of trainable parameters in the model.
    """
    trainable_params = 0
    all_param = 0
    for _, param in model.named_parameters():
        all_param += param.numel()
        if param.requires_grad:
            trainable_params += param.numel()
    print(
        f"trainable params: {trainable_params} || all params: {all_param} || trainable%: {100 * trainable_params / all_param}"
    )

from peft import LoraConfig,get_peft_model,prepare_model_for_kbit_training

model = prepare_model_for_kbit_training(model)
config = LoraConfig(
    r=32,
    lora_alpha=16,
    target_modules=["q_proj", "k_proj", "v_proj", "o_proj", "gate_proj", "up_proj","down_proj"],
    lora_dropout=0.05,
    bias="none",
    task_type="CAUSAL_LM",
)
model = get_peft_model(model, config)
print(model)
print_trainable_parameters(model)


# Verifying the datatypes.
dtypes = {}
for _, p in model.named_parameters():
    dtype = p.dtype
    if dtype not in dtypes:
        dtypes[dtype] = 0
    dtypes[dtype] += p.numel()
total = 0
for k, v in dtypes.items():
    total += v
for k, v in dtypes.items():
    print(k, v, v / total)

"""### Training"""

data = load_dataset('json',data_files="./quotes.jsonl")
data = data.map(lambda samples: tokenizer(samples["quote"]), batched=True)
print(data)

trainer = transformers.Trainer(
    model=model,
    train_dataset=data["train"],
    args=transformers.TrainingArguments(
        per_device_train_batch_size=4,
        gradient_accumulation_steps=4,
        warmup_steps=10,
        max_steps=50,
        learning_rate=3e-4,
        fp16=True,
        logging_steps=1,
        output_dir="outputs/checkpoint-1"+time_str,
        optim="paged_adamw_8bit",
        save_strategy = 'steps',
        save_steps = 10,
    ),
    data_collator=transformers.DataCollatorForLanguageModeling(tokenizer, mlm=False),
)

model.config.use_cache = False  # silence the warnings. Please re-enable for inference!
trainer.train()

trainer.save_model(trainer.args.output_dir)


import torch
from peft import PeftModel, PeftConfig
from transformers import AutoModelForCausalLM, AutoTokenizer

peft_model_dir = trainer.args.output_dir
config = PeftConfig.from_pretrained(peft_model_dir)
print(config)
model = AutoModelForCausalLM.from_pretrained(
    config.base_model_name_or_path, return_dict=True,  device_map=device,
    torch_dtype=torch.float16, quantization_config=quantization_config
)
tokenizer = AutoTokenizer.from_pretrained(config.base_model_name_or_path)

# Load the Lora model
model = PeftModel.from_pretrained(model, peft_model_dir)

print(model)
# 模拟对话
prompt = "详细介绍一下大语言模型,评价下与深度学习的差异"
messages = [
    {"role": "system", "content": "你是一个智能助理."},
    {"role": "user", "content": prompt}
]
text = tokenizer.apply_chat_template(
    messages,
    tokenize=False,
    add_generation_prompt=True
)
model_inputs = tokenizer([text], return_tensors="pt").to(model.device)

gen_kwargs = {"max_length": 512, "do_sample": True, "top_k": 1}
with torch.no_grad():
    outputs = model.generate(**model_inputs, **gen_kwargs)
    outputs = outputs[:, model_inputs['input_ids'].shape[1]:] #切除system、user等对话前缀
    print(tokenizer.decode(outputs[0], skip_special_tokens=True))

四、总结

本文首先对量化和微调的原理进行剖析,接着以Qwen2-7B为例,基于QLoRA、PEFT一步一步带着大家微调自己的大模型,本文参考全网peft+qlora微调教程,一步一排坑,让大家在网络环境不允许的情况下,也能丝滑的开启大模型微调之旅。希望能帮助到大家,喜欢的话关注+三连噢。

如果您还有时间,可以看看我的其他文章:

《AI—工程篇》

AI智能体研发之路-工程篇(一):Docker助力AI智能体开发提效

AI智能体研发之路-工程篇(二):Dify智能体开发平台一键部署

AI智能体研发之路-工程篇(三):大模型推理服务框架Ollama一键部署

AI智能体研发之路-工程篇(四):大模型推理服务框架Xinference一键部署

AI智能体研发之路-工程篇(五):大模型推理服务框架LocalAI一键部署

《AI—模型篇》

AI智能体研发之路-模型篇(一):大模型训练框架LLaMA-Factory在国内网络环境下的安装、部署及使用

AI智能体研发之路-模型篇(二):DeepSeek-V2-Chat 训练与推理实战

AI智能体研发之路-模型篇(三):中文大模型开、闭源之争

AI智能体研发之路-模型篇(四):一文入门pytorch开发

AI智能体研发之路-模型篇(五):pytorch vs tensorflow框架DNN网络结构源码级对比

AI智能体研发之路-模型篇(六):【机器学习】基于tensorflow实现你的第一个DNN网络

AI智能体研发之路-模型篇(七):【机器学习】基于YOLOv10实现你的第一个视觉AI大模型

AI智能体研发之路-模型篇(八):【机器学习】Qwen1.5-14B-Chat大模型训练与推理实战

AI智能体研发之路-模型篇(九):【机器学习】GLM4-9B-Chat大模型/GLM-4V-9B多模态大模型概述、原理及推理实战

AI智能体研发之路-模型篇(十):【机器学习】Qwen2大模型原理、训练及推理部署实战

《AI—Transformers应用》

【AI大模型】Transformers大模型库(一):Tokenizer

【AI大模型】Transformers大模型库(二):AutoModelForCausalLM

【AI大模型】Transformers大模型库(三):特殊标记(special tokens)

【AI大模型】Transformers大模型库(四):AutoTokenizer

【AI大模型】Transformers大模型库(五):AutoModel、Model Head及查看模型结构

【AI大模型】Transformers大模型库(六):torch.cuda.OutOfMemoryError: CUDA out of memory解决

【AI大模型】Transformers大模型库(七):单机多卡推理之device_map

【AI大模型】Transformers大模型库(八):大模型微调之LoraConfig

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1819492.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

Photoshop 2024 mac/win版:探索图像处理的全新境界

Photoshop 2024是Adobe推出的最新图像处理与设计软件,它在继承了前作所有优秀特性的基础上,实现了多个方面的质的飞跃。这款软件凭借其卓越的图像处理性能、丰富的创意工具以及精确的选区编辑功能,成为了图像处理领域的佼佼者。 Photoshop 2…

Golang免杀-分离式加载器(传参)AES加密

目录 enc.go 生成: dec.go --执行dec.go...--上线 cs生成个c语言的shellcode. enc.go go run .\enc.go shellcode 生成: --key为公钥. --code为AES加密后的数据, ----此脚本每次运行key和code都会变化. package mainimport ("bytes""crypto/aes"&…

redis 08 慢查询日志

1.什么是慢查询日志 2.慢查询和两个参数有关 2.1 2.2 3.例子: 4 参数详细介绍:

共模信号与差模信号

差模信号又称串模信号,指的是两根线之间的信号差值;而共模信号又称对地信号,指的是两根线分别对地的信号。 差模信号:大小相等,方向相反的信号。共模信号:大小相等,方向相同的信号。 对于两输…

集合查询-并(UNION)集运算、交(INTERSECT)集运算、差(EXCEPT)集运算

一、概述 集合查询是对两个SELECT语句的查询结果进行再进行处理的查询 二、条件 1、两个SELECT语句的查询结果必须是属性列数目相同 2、两个SELECT语句的查询结果必须是对应位置上的属性列必须是相同的数据类型 三、并(UNION)运算 1、语法格式: SELECT 语句1…

4090显卡 安装cuda 11.3 版本

文章目录 cuda 安装安装过程中会要求选择安装的内容更改cuda地址到你安装的地方 cuda 安装 cuda官网寻找cuda11.3 版本 https://developer.nvidia.com/cuda-11.3.0-download-archive?target_osLinux&target_archx86_64&DistributionUbuntu&target_version20.04&…

和利时DCS数据采集对接安监平台

在工业互联网日益繁荣的今天,工业数据的采集、传输与利用变得至关重要。特别是在工业自动化领域,数据的实时性和准确性直接关系到生产效率和安全性。和利时DCS(分布式控制系统)以其卓越的稳定性和可靠性,在工业自动化领…

被封号后,我终于明白免费代理的危害

在数字时代,网络已经成为人们日常生活和商业活动中不可或缺的一部分。为了实现更广阔的业务拓展和更畅通的网络体验,许多人开始考虑使用代理服务器。然而,虽然免费代理可能听起来像是个经济实惠的选择,但事实上,它可能…

SSH协议

SSH协议简介 SSH(Secure Shell)是一种网络安全协议,用于在不安全的网络环境中提供加密的远程登录和其他网络服务。它通过加密和认证机制实现安全的访问和文件传输等业务,是Telnet、FTP等不安全远程shell协议的安全替代方案。 SSH协…

数据挖掘丨轻松应用RapidMiner机器学习内置数据分析案例模板详解(下篇)

RapidMiner 案例模板 RapidMiner 机器学习平台提供了一个可视化的操作界面,允许用户通过拖放的方式构建数据分析流程。RapidMiner目前内置了 13 种案例模板,这些模板是预定义的数据分析流程,可以帮助用户快速启动和执行常见的数据分析任务。 …

大模型微调出错的解决方案(持续更新)

大家好,我是herosunly。985院校硕士毕业,现担任算法研究员一职,热衷于机器学习算法研究与应用。曾获得阿里云天池比赛第一名,CCF比赛第二名,科大讯飞比赛第三名。拥有多项发明专利。对机器学习和深度学习拥有自己独到的见解。曾经辅导过若干个非计算机专业的学生进入到算法…

关于python下安装selenium以及使用

📑打牌 : da pai ge的个人主页 🌤️个人专栏 : da pai ge的博客专栏 ☁️宝剑锋从磨砺出,梅花香自苦寒来 目录 1、win10安装python环境 2、…

【第6章】Vue生命周期

文章目录 前言一、生命周期1. 两大类2. 生命周期 二、选项式生命周期1. 代码2. 效果 三、组合式生命周期1. 代码2. 效果2.1 挂载和更新2.2 卸载和挂载 总结 前言 每个 Vue 组件实例在创建时都需要经历一系列的初始化步骤,比如设置好数据侦听,编译模板&a…

【MySQL】MySQL45讲-读书笔记

1、基础架构:一条SQL查询语句是如何执行的? 1.1 连接器 连接器负责跟客户端建立连接、获取权限、维持和管理连接。 mysql -h$ip -P$port -u$user -p输完命令之后,输入密码。 1.2 查询缓存 MySQL 拿到一个查询请求后,会先到查询缓…

AlmaLinux 8.10 x86_64 OVF (sysin) - VMware 虚拟机模板

AlmaLinux 8.10 x86_64 OVF (sysin) - VMware 虚拟机模板 AlmaLinux release 8.10 请访问原文链接:https://sysin.org/blog/almalinux-8-ovf/,查看最新版。原创作品,转载请保留出处。 作者主页:sysin.org 2023.03.08 更新&…

自动控制原理【期末复习】(二)

无人机上桨之后可以在调试架上先调试: 1.根轨迹的绘制 /// 前面针对的是时域分析,下面针对频域分析: 2.波特图 3.奈维斯特图绘制 1.奈氏稳定判据 2.对数稳定判据 3.相位裕度和幅值裕度

数组(C语言)(详细过程!!!)

目录 数组的概念 一维数组 sizeof计算数组元素个数 二维数组 C99中的变⻓数组 数组的概念 数组是⼀组相同类型元素的集合。 数组分为⼀维数组和多维数组,多维数组⼀般比较多见的是二维数组。 从这个概念中我们就可以发现2个有价值的信息:(1)数…

直播带货连创新高!TikTok美区下半年将迎来集中爆发!

美区直播带短短两周时间,TikTok货迎来大爆发! 5月31日,美国顶流美妆网红“Jeffree Star”,带货直播单场GMV创记录,销售额达到66.5万美元(约482.4万人民币)。紧接着,6月8日&#xff0…

一套轻量、安全的问卷系统基座,提供面向个人和企业的一站式产品级解决方案

大家好,今天给大家分享的是一款轻量、安全的问卷系统基座。 XIAOJUSURVEY是一套轻量、安全的问卷系统基座,提供面向个人和企业的一站式产品级解决方案,快速满足各类线上调研场景。 内部系统已沉淀 40种题型,累积精选模板 100&a…

【快速上手】Win11家庭版升级专业版的3种方法!

在Win11电脑操作中,用户使用的是家庭版系统,现在用户想把家庭版升级为专业版,但不知道具体要怎么操作才能完成版本的升级操作?接下来小编介绍三种简单快速的方法,帮助大家轻松将Win11电脑系统升级为专业版本。 方法 1&…