⌈ 传知代码 ⌋ MonoCon解读与复现

news2024/11/27 16:27:53

💛前情提要💛

本文是传知代码平台中的相关前沿知识与技术的分享~

接下来我们即将进入一个全新的空间,对技术有一个全新的视角~

本文所涉及所有资源均在传知代码平台可获取

以下的内容一定会让你对AI 赋能时代有一个颠覆性的认识哦!!!

以下内容干货满满,跟上步伐吧~


📌导航小助手📌

  • 💡本章重点
  • 🍞一. 概述
  • 🍞二. 论文方法
  • 🍞三. 论文总结
  • 🍞四. 代码复现
  • 🍞五. 数据集划分
  • 🍞六. 训练模型
  • 🍞七. 模型推理与可视化结果
  • 🫓总结


💡本章重点

  • MonoCon解读与复现

🍞一. 概述

本文介绍了一种名为 MonoCon 的方法,用于单目深度目标检测任务中的辅助学习。该方法利用了训练数据中丰富的投影2D监督信号作为辅助任务,在训练过程中同时学习了目标3D边界框和辅助上下文信息。实验结果表明,该方法在KITTI基准测试中取得了优异的表现,并且具有较快的推理速度。

在这里插入图片描述


🍞二. 论文方法

方法描述

该论文提出了一种名为MonoCon的单目深度估计方法,用于预测3D物体的中心位置、形状尺寸和观察角度等参数。

论文实验

本文主要介绍了作者在Kitti 3D目标检测基准上进行的实验,并与现有的方法进行了比较。具体来说,作者首先对数据集和评估指标进行了介绍,然后针对MonoCon方法进行了训练和测试,并对其进行了详细的分析和解释。

在实验中,作者使用了Kitti 3D目标检测基准中的数据集,其中包括7481张图像用于训练和7518张图像用于测试。共有三个类别感兴趣:汽车、行人和自行车。作者采用了官方服务器提供的平均精度(AP)作为评估指标,包括AP3D|R40和APBEV|R40两个指标,均使用40个召回位置(R40),并在三种难度级别下进行评估。此外,作者还提供了训练和验证子集的划分方式。

在实验结果方面,作者首先将MonoCon与其他现有方法进行了比较。对于汽车类别,MonoCon在所有评估指标下都表现出了显著的优势,比第二名的方法GUPNet提高了1.44%的绝对增加率。同时,MonoCon也比其他方法运行得更快。然而,在行人和自行车类别上,MonoCon的表现不如一些现有方法。对于行人类别,MonoCon相对于最佳模型GUPNet有1.35%的AP3D|R40下降,但在所有方法中表现最好。对于自行车类别,MonoCon相对于最佳纯单目方法MonoDLE有1.29%的AP3D|R40下降,但仍然优于其他方法。作者认为,这可能是因为自行车类别的3D边界框比汽车类别的要小得多,投影到特征图上的辅助上下文往往非常接近,这可能会影响辅助上下文的学习效果。

最后,作者进行了多个Ablation Study来进一步分析MonoCon的效果。其中,作者发现学习辅助上下文是提高MonoCon性能的关键因素之一,而注意力归一化的作用相对较小。此外,作者还研究了回归头的类无关设置和训练设置的影响,发现在某些情况下可以提高性能。

总的来说,本文通过一系列实验和分析,证明了MonoCon在3D目标检测任务中的有效性,并提出了一些改进方向。

在这里插入图片描述


🍞三. 论文总结

文章优点

该论文提出了一种简单而有效的方法来进行单目3D目标检测,不需要利用任何额外的信息。作者提出的MonoCon方法学习了辅助单目上下文,这些上下文是从训练中的3D边界框投影而来。该方法采用了简单的实现设计,包括一个卷积神经网络特征背心和一组具有相同模块架构的回归头,用于必要的参数和辅助上下文。在实验中,MonoCon在Kitti 3D目标检测基准测试中表现出色,在汽车类别上优于最先进的方法,并在行人和骑自行车类别上获得与之相当的表现。此外,该方法还使用Cramer-Wold定理解释了其有效性,并进行了有效的实验验证。

方法创新点

该论文提出了MonoCon方法,这是一种基于单目上下文的学习方法,可以提高单目3D目标检测的性能。该方法通过利用3D边界框的投影来提取丰富的监督信号,从而有效地提高了模型的表达能力。此外,该方法采用了简单的实现设计,使得模型更加高效和易于理解。

未来展望

该论文提出的方法为单目3D目标检测提供了一个新的思路,但仍然存在一些挑战需要克服。例如,如何进一步提高模型的准确性和鲁棒性,以及如何将该方法扩展到其他应用场景中。因此,未来的研究方向可能包括改进模型的设计和优化算法,以提高模型的性能和效率。同时,还需要进一步探索单目上下文的潜力,以便更好地应用于实际场景中。


🍞四. 代码复现

这是不同于官方的基于pytorch的monocon复现

[Step 1]: 创建新的环境

Set [ENV_NAME] freely to any name you want. (Please exclude the brackets.)
conda create --name [ENV_NAME] python=3.8
conda activate [ENV_NAME]

[Step 2]: 下载新的代码

部分核心代码如下:

  • monocon_detector.py
import os
import sys
import torch
import torch.nn as nn

from typing import Tuple, Dict, Any

sys.path.append(os.path.join(os.path.dirname(__file__), "..", ".."))
from model import DLA, DLAUp, MonoConDenseHeads


default_head_config = {
    'num_classes': 3,
    'num_kpts': 9,
    'num_alpha_bins': 12,
    'max_objs': 30,
}


default_test_config = {
    'topk': 30,
    'local_maximum_kernel': 3,
    'max_per_img': 30,
    'test_thres': 0.4,
}


class MonoConDetector(nn.Module):
    def __init__(self,
                 num_dla_layers: int = 34,
                 pretrained_backbone: bool = True,
                 head_config: Dict[str, Any] = None,
                 test_config: Dict[str, Any] = None):
        
        super().__init__()
        
        self.backbone = DLA(num_dla_layers, pretrained=pretrained_backbone)
        self.neck = DLAUp(self.backbone.get_out_channels(start_level=2), start_level=2)
        
        if head_config is None:
            head_config = default_head_config
        if test_config is None:
            test_config = default_test_config
            
        if num_dla_layers in [34, 46]:
            head_in_ch = 64
        else:
            head_in_ch = 128
            
        self.head = MonoConDenseHeads(in_ch=head_in_ch, test_config=test_config, **head_config)
        
        
    def forward(self, data_dict: Dict[str, Any], return_loss: bool = True) -> Tuple[Dict[str, torch.Tensor]]:
        
        feat = self._extract_feat_from_data_dict(data_dict)
        
        if self.training:
            pred_dict, loss_dict = self.head.forward_train(feat, data_dict)
            if return_loss:
                return pred_dict, loss_dict
            return pred_dict
        
        else:
            pred_dict = self.head.forward_test(feat)
            return pred_dict
        
    
    def batch_eval(self, 
                   data_dict: Dict[str, Any], 
                   get_vis_format: bool = False) -> Dict[str, Any]:
        
        if self.training:
            raise Exception(f"Model is in training mode. Please use '.eval()' first.")
        
        pred_dict = self.forward(data_dict, return_loss=False)
        eval_format = self.head._get_eval_formats(data_dict, pred_dict, get_vis_format=get_vis_format)
        return eval_format
    
    
    def load_checkpoint(self, ckpt_file: str):
        model_dict = torch.load(ckpt_file)['state_dict']['model']
        self.load_state_dict(model_dict)


    def _extract_feat_from_data_dict(self, data_dict: Dict[str, Any]) -> torch.Tensor:
        img = data_dict['img']
        return self.neck(self.backbone(img))[0]

[Step 3]: See https://pytorch.org/get-started/locally/ and install pytorch for your environment.

We have tested on version 1.10.0.
It is recommended to install version 1.7.0 or higher.

[Step 4]: Install some packages using ‘requirements.txt’ in the repository.

The version of numpy must be 1.22.4.
pip install -r requirements.txt

[Step 5]

conda install cudatoolkit

🍞五. 数据集划分

下载后的文件放在 dataset 目录中,存放的目录结构

dataset
│
├── training
│ ├── calib
│ │ ├── 000000.txt
│ │ ├── 000001.txt
│ │ └── …
│ ├── image_2
│ │ ├── 000000.png
│ │ ├── 000001.png
│ │ └── …
│ └── label_2
│ ├── 000000.txt
│ ├── 000001.txt
│ └── …
│
└── testing
├── calib
└── image_2

需要对数据集划分:train训练集、val验证集,在dataset目录下新建一个文件to_train_val.py

用于将training 带标签数据(7481帧),划分为train(3712帧)、val(3769帧),代码如下:

 
import os
import shutil
 
# 【一】、读取train.txt文件
with open('./ImageSets/train.txt', 'r') as file:
    # 逐行读取train.txt文件中的文件名ID
    file_ids = [line.strip() for line in file]
 
# 【1】calib
# 指定路径A和路径B
path_A = './training/calib'
path_B = './train/calib'
 
# 如果路径B不存在,创建它
if not os.path.exists(path_B):
    os.makedirs(path_B)
 
# 遍历文件名ID并复制文件到路径B
for file_id in file_ids:
    source_file = os.path.join(path_A, f"{file_id}.txt")
    destination_file = os.path.join(path_B, f"{file_id}.txt")
    
    if os.path.exists(source_file):
        shutil.copy(source_file, destination_file)
    else:
        print(f"文件未找到:{file_id}.txt")
 
 
# 【2】image_2
# 指定路径A和路径B
path_A = './training/image_2'
path_B = './train/image_2'
 
# 如果路径B不存在,创建它
if not os.path.exists(path_B):
    os.makedirs(path_B)
 
# 遍历文件名ID并复制文件到路径B
for file_id in file_ids:
    source_file = os.path.join(path_A, f"{file_id}.png")
    destination_file = os.path.join(path_B, f"{file_id}.png")
    
    if os.path.exists(source_file):
        shutil.copy(source_file, destination_file)
    else:
        print(f"文件未找到:{file_id}.txt")
 
 
# 【3】label_2
# 指定路径A和路径B
path_A = './training/label_2'
path_B = './train/label_2'
 
# 如果路径B不存在,创建它
if not os.path.exists(path_B):
    os.makedirs(path_B)
 
# 遍历文件名ID并复制文件到路径B
for file_id in file_ids:
    source_file = os.path.join(path_A, f"{file_id}.txt")
    destination_file = os.path.join(path_B, f"{file_id}.txt")
    
    if os.path.exists(source_file):
        shutil.copy(source_file, destination_file)
    else:
        print(f"文件未找到:{file_id}.txt")
 
 
 
 
 
 
# 【二】、读取valtxt文件
with open('./ImageSets/val.txt', 'r') as file:
    # 逐行读取val.txt文件中的文件名ID
    file_ids = [line.strip() for line in file]
 
# 【1】calib
# 指定路径A和路径B
path_A = './training/calib'
path_B = './val/calib'
 
# 如果路径B不存在,创建它
if not os.path.exists(path_B):
    os.makedirs(path_B)
 
# 遍历文件名ID并复制文件到路径B
for file_id in file_ids:
    source_file = os.path.join(path_A, f"{file_id}.txt")
    destination_file = os.path.join(path_B, f"{file_id}.txt")
    
    if os.path.exists(source_file):
        shutil.copy(source_file, destination_file)
    else:
        print(f"文件未找到:{file_id}.txt")
 
 
# 【2】image_2
# 指定路径A和路径B
path_A = './training/image_2'
path_B = './val/image_2'
 
# 如果路径B不存在,创建它
if not os.path.exists(path_B):
    os.makedirs(path_B)
 
# 遍历文件名ID并复制文件到路径B
for file_id in file_ids:
    source_file = os.path.join(path_A, f"{file_id}.png")
    destination_file = os.path.join(path_B, f"{file_id}.png")
    
    if os.path.exists(source_file):
        shutil.copy(source_file, destination_file)
    else:
        print(f"文件未找到:{file_id}.txt")
 
 
# 【3】label_2
# 指定路径A和路径B
path_A = './training/label_2'
path_B = './val/label_2'
 
# 如果路径B不存在,创建它
if not os.path.exists(path_B):
    os.makedirs(path_B)
 
# 遍历文件名ID并复制文件到路径B
for file_id in file_ids:
    source_file = os.path.join(path_A, f"{file_id}.txt")
    destination_file = os.path.join(path_B, f"{file_id}.txt")
    
    if os.path.exists(source_file):
        shutil.copy(source_file, destination_file)
    else:
        print(f"文件未找到:{file_id}.txt")

🍞六. 训练模型

训练模型的配置在config/monocon_configs.py:

需要修改数据集的路径。

模型训练保存的路径,比如./checkpoints_train,新建一个checkpoints_train文件夹。

如果GPU显存小于16G,要将_C.USE_BENCHMARK 设置为False;如果大约16G,设置为True。

设置BATCH_SIZE的大小,默认 _C.DATA.BATCH_SIZE = 8

设置CPU线程数,默认 _C.DATA.NUM_WORKERS = 4

设置验证模型和保存模型的间隔轮数,默认_C.PERIOD.EVAL_PERIOD = 10

from yacs.config import CfgNode as CN
 
 
_C = CN()
 
_C.VERSION = 'v1.0.3'
_C.DESCRIPTION = "MonoCon Default Configuration"
 
_C.OUTPUT_DIR = "./checkpoints_train"                               # Output Directory
_C.SEED = -1                                     # -1: Random Seed Selection
_C.GPU_ID = 0                                    # Index of GPU to use
 
_C.USE_BENCHMARK = False                          # Value of 'torch.backends.cudnn.benchmark' and 'torch.backends.cudnn.enabled'
 
 
# Data
_C.DATA = CN()
_C.DATA.ROOT = r'./dataset'                  # KITTI Root
_C.DATA.BATCH_SIZE = 8
_C.DATA.NUM_WORKERS = 4
_C.DATA.TRAIN_SPLIT = 'train' 
_C.DATA.TEST_SPLIT = 'val' 
 
_C.DATA.FILTER = CN()
_C.DATA.FILTER.MIN_HEIGHT = 25
_C.DATA.FILTER.MIN_DEPTH = 2
_C.DATA.FILTER.MAX_DEPTH = 65
_C.DATA.FILTER.MAX_TRUNCATION = 0.5
_C.DATA.FILTER.MAX_OCCLUSION = 2
 
 
# Model
_C.MODEL = CN()
 
_C.MODEL.BACKBONE = CN()
_C.MODEL.BACKBONE.NUM_LAYERS = 34
_C.MODEL.BACKBONE.IMAGENET_PRETRAINED = True
 
_C.MODEL.HEAD = CN()
_C.MODEL.HEAD.NUM_CLASSES = 3
_C.MODEL.HEAD.MAX_OBJS = 30
 
 
# Optimization
_C.SOLVER = CN()
 
_C.SOLVER.OPTIM = CN()
_C.SOLVER.OPTIM.LR = 2.25E-04
_C.SOLVER.OPTIM.WEIGHT_DECAY = 1E-05
_C.SOLVER.OPTIM.NUM_EPOCHS = 20        # Max Training Epochs 200
 
_C.SOLVER.SCHEDULER = CN()
_C.SOLVER.SCHEDULER.ENABLE = True
 
_C.SOLVER.CLIP_GRAD = CN()
_C.SOLVER.CLIP_GRAD.ENABLE = True
_C.SOLVER.CLIP_GRAD.NORM_TYPE = 2.0
_C.SOLVER.CLIP_GRAD.MAX_NORM = 35 
 
 
# Period
_C.PERIOD = CN()
_C.PERIOD.EVAL_PERIOD = 10                      # In Epochs / Set -1 if you don't want validation 10
_C.PERIOD.LOG_PERIOD = 50                       # In Steps 50

🍞七. 模型推理与可视化结果

模型推理的命令含义如下:

python test.py --config_file [FILL] # Config file (.yaml file)

–checkpoint_file [FILL] # Checkpoint file (.pth file)

–visualize # Perform visualization (Qualitative Results)

–gpu_id [Optional] # Index of GPU to use for testing (Default: 0)

–save_dir [FILL] # Path where visualization results will be saved to

  • 使用刚才训练的权重,模型推理示例:
python test.py --config_file checkpoints_train/config.yaml --checkpoint_file checkpoints_train/checkpoints/epoch_010.pth --visualize --save_dir save_output --gpu_id 0

在这里插入图片描述

视频推理

python test_raw.py  --data_dir          [FILL]      # Path where sequence images are saved
                    --calib_file        [FILL]      # Calibration file ("calib_cam_to_cam.txt")
                    --checkpoint_file   [FILL]      # Checkpoint file (.pth file)
                    --gpu_id            [Optional]  # Index of GPU to use for testing (Default: 0)
                    --fps               [Optional]  # FPS of the result video (Default: 25)
                    --save_dir          [FILL]      # Path of the directory to save the result video

参考材料

@InProceedings{liu2022monocon,
    title={Learning Auxiliary Monocular Contexts Helps Monocular 3D Object Detection},
    author={Xianpeng Liu, Nan Xue, Tianfu Wu},
    booktitle = {36th AAAI Conference on Artifical Intelligence (AAAI)},
    month = {Feburary},
    year = {2022}
}
https://blog.csdn.net/qq_41204464/article/details/133824468
https://guo-pu.blog.csdn.net/article/details/133834915

🫓总结

综上,我们基本了解了“一项全新的技术啦” 🍭 ~~

恭喜你的内功又双叒叕得到了提高!!!

感谢你们的阅读😆

后续还会继续更新💓,欢迎持续关注📌哟~

💫如果有错误❌,欢迎指正呀💫

✨如果觉得收获满满,可以点点赞👍支持一下哟~✨

【传知科技 – 了解更多新知识】

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1816250.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

【Gradio】快速入门

https://www.gradio.app/ Gradio 是一个开源 Python 软件包https://github.com/gradio-app/gradio ,可以让你快速为机器学习模型、API 或任何任意 Python 函数创建一个演示或网络应用程序。然后,您就可以使用 Gradio 内置的分享功能,在几秒钟…

ROS2底层机制源码分析

init ->init_and_remove_ros_arguments ->init ->Context::init 保存初始化传入的信号 ->install_signal_handlers→SignalHandler::install 开线程响应信号 ->_remove_ros_arguments 移除ros参数 ->SingleNodeManager::instance().…

D-Bus——system 调用session 报错

以下代码是一个 session 服务和 systemd 服务 demo &#xff1a; systemd DBus #include <QCoreApplication> #include <QDBusConnection> #include <QDBusInterface> #include <QDBusError> #include <QDebug>class TestObject : public QObje…

一文搞懂flex布局

上学读书的时候&#xff0c;学习flex布局&#xff0c;更多停留在理论知识层面。近来&#xff0c;经过工作实践&#xff0c;发现自己对flex布局的理解更加深入&#xff0c;运用起来更加熟练&#xff0c;也越发能感受到flex布局的强大灵活性&#xff0c;特来总结一波。若有错误之…

Android Glide loading Bitmap from RESOURCE_DISK_CACHE slow,cost time≈2 seconds+

Android Glide loading Bitmap from RESOURCE_DISK_CACHE slow,cost time≈2 seconds 加载一张宽高约100px多些的小图&#xff0c;是一张相当小的正常图片&#xff0c;loading Bitmap from RESOURCE_DISK_CACHE竟然耗时达到惊人的3秒左右&#xff01;&#xff08;打开Glide调试…

元宇宙数字化3D虚拟展馆

随着科技的飞速发展&#xff0c;我们迎来了一个全新的时代——元宇宙时代。在这个充满无限可能的虚拟世界中&#xff0c;元宇宙数字展馆搭建编辑器应运而生&#xff0c;以其卓越的技术和创新的理念&#xff0c;为用户带来了前所未有的沉浸式展览体验。 元宇宙数字展馆搭建编辑器…

普涨和补涨—2024年上半年全球投资趋势

全球大宗商品价格处在上涨周期&#xff0c;东吴证券认为上游能源行业股价还有继续上涨的空间。随着6月全球股指进一步上涨&#xff0c;预计港股可能还会迎来补涨行情。 一、我们观察的全球投资趋势&#xff1a; 1、全球股指普涨&补涨。全球风险资产进入2024年后普遍上涨&am…

Spark安装、解压、配置环境变量、WordCount

Spark 小白的spark学习笔记 2024/5/30 10:14 文章目录 Spark安装解压改名配置spark-env.sh重命名&#xff0c;配置slaves启动查看配置环境变量 工作流程maven创建maven项目配置maven更改pom.xml WordCount按照用户求消费额上传到spark集群上运行 安装 上传&#xff0c;直接拖拽…

一文讲清:生产报工系统的功能、报价以及如何选择

最近这几年&#xff0c;企业越来越注重生产的速度和成本&#xff0c;尤其是“性价比”&#xff0c;生产报工系统已经变成了制造业里不可或缺的一部分。不过&#xff0c;市场上生产报工系统的选择太多&#xff0c;价格也都不一样&#xff0c;这就给很多企业出了个难题&#xff1…

【Python数据魔术】:揭秘类型奥秘,赋能代码创造

文章目录 &#x1f680;一.运算符&#x1f308;1. 算术运算符&#x1f308;2. 身份运算符&#x1f308;3. 成员运算符⭐4. 增量运算符⭐5. 比较运算符⭐6. 逻辑运算符 &#x1f680;二.可变与不可变&#x1f680;三.字符串转义&#x1f680;四.编码与解码&#x1f4a5;1. 基础使…

SpringBoot 异常配置

系统异常处理 创建异常处理器类&#xff0c;类上添加ControllerAdvice注解。 package com.soft.exception;import org.springframework.web.bind.annotation.ControllerAdvice; import org.springframework.web.bind.annotation.ExceptionHandler; import org.springframewor…

Java的集合框架总结

Map接口和Collection接口是所有集合框架的父接口&#xff1a; Collection接口的子接口包括&#xff1a;Set接口和List接口 Map接口的实现类主要有&#xff1a;HashMap、TreeMap、Hashtable、ConcurrentHashMap以及Properties等 Set接口的实现类主要有&#xff1a;HashSet、Tr…

【数据结构】二叉树:一场关于节点与遍历的艺术之旅

专栏引入 哈喽大家好&#xff0c;我是野生的编程萌新&#xff0c;首先感谢大家的观看。数据结构的学习者大多有这样的想法&#xff1a;数据结构很重要&#xff0c;一定要学好&#xff0c;但数据结构比较抽象&#xff0c;有些算法理解起来很困难&#xff0c;学的很累。我想让大家…

数据结构之链表的经典笔试题

找往期文章包括但不限于本期文章中不懂的知识点&#xff1a; 个人主页&#xff1a;我要学编程(ಥ_ಥ)-CSDN博客 所属专栏&#xff1a;数据结构&#xff08;Java版&#xff09; 目录 203. 移除链表元素 206. 反转链表 876. 链表的中间节点 面试题 02.02. 返回倒数第k个节点 …

零基础非科班也能掌握的C语言知识22 预处理详解(完结)

预处理详解 1.预处理符号2.#define 定义常量3.#define 定义宏4.带有副作用的宏参数5.宏替换的规则6.宏函数的对比6.1 例子6.1 .16.1.26.1.3 7.命名约定8.undefin9.命令行定义(博主没办法演示)10.条件编译11.头文件的包含11.1本地文件11.2库文件的包含11.3 嵌套文件的包含 12.其…

软件安全测评有哪些测试流程?第三方检测机构进行安全测评的好处

在今天的高科技时代&#xff0c;软件产品已经成为人们生活和工作的重要组成部分。然而&#xff0c;与其普及和深入应用的&#xff0c;软件安全问题也日益凸显。 为了保障软件产品在使用过程中的安全性&#xff0c;进行安全测评是必不可少的。安全测评可以全面评估软件系统的安…

GPT-4o多模态大模型的架构设计

GPT-4o&#xff1a;大模型风向&#xff0c;OpenAI大更新 OpenAI震撼发布两大更新&#xff01;桌面版APP与全新UI的ChatGPT上线&#xff0c;简化用户操作&#xff0c;体验更自然。同时&#xff0c;全能模型GPT-4o惊艳亮相&#xff0c;跨模态即时响应&#xff0c;性能卓越且性价比…

Java集合自测题

文章目录 一、说说 List , Set , Map 三者的区别&#xff1f;二、List , Set , Map 在 Java 中分别由哪些对应的实现类&#xff1f;底层的数据结构&#xff1f;三、有哪些集合是线程不安全的&#xff1f;怎么解决呢&#xff1f;四、HashMap 查询&#xff0c;删除的时间复杂度五…

k8s中的pod域名解析失败定位案例

问题描述 我在k8s中启动了一个Host网络模式的pod&#xff0c;这个pod的域名解析失败了。 定位步骤 敲kubectl exec -it [pod_name] -- bash进入pod后台&#xff0c;查看/etc/resolv.conf&#xff0c;发现nameserver配的有问题。这里我预期的nameserver应该使用宿主机的&…

【Linux】线程(一)

谈论之前需要先谈论一些线程的背景知识 其中就有进程地址空间&#xff0c;又是这个让我们又爱又恨的东西 目录 背景知识&#xff1a;地址空间&#xff1a; 背景知识&#xff1a; 地址空间&#xff1a; 说在前边&#xff0c;OS通常分为4个核心模块&#xff1a;执行流管理&…