对yoloV8进行标签过滤来实现行人检测

news2024/11/24 21:06:15

前言

上一章我们介绍的通过迁移学习,在新的行人数据集上使用已经学习到的特征和权重,从而更快地实现行人检测任务。模型就会调整其参数以适应新的数据集,以提高对行人的识别性能。接下来介绍一种更快更便捷的方法,依旧是基于yolov8。

标签过滤方法

在这种方法中,不对模型进行重新训练,而是在模型输出的基础上,通过筛选、过滤标签来达到特定的识别目标。以下详细介绍这种方法:
1.模型输出: 首先使用一个预训练好的目标检测模型来对图像进行检测。在这里插入图片描述
这些模型已经在大型数据集上进行了训练,学习到了各种不同类别的目标的特征。

2.目标标签过滤: 接下来,从模型的输出结果中提取目标的标签信息。这些标签通常包含了检测到的目标类别(如人、车、狗等)、位置(边界框坐标)、置信度分数等信息。

3.选择感兴趣的类别: 在标签过滤的过程中,根据任务需求选择感兴趣的目标类别。例如,只对行人感兴趣,您可以只保留标签为“行人”的目标检测结果,而过滤掉其他类别的目标。

4.阈值处理: 除了选择感兴趣的类别外,还可以根据置信度分数来进行阈值处理。通常情况下,模型会为每个检测到的目标分配一个置信度分数,表示该目标存在的概率。您可以根据设定的阈值来过滤掉低置信度的检测结果,以确保只保留可信度较高的目标。

5.结果可视化或保存: 最后,将经过标签过滤处理后的目标检测结果进行可视化或保存。通常,可以将过滤后的结果在图像或视频中标注出来,以便后续分析或应用。

完整的demo

只需要运行这段推理脚本即可。

import cv2
from ultralytics import YOLO
# 加载YOLOv8模型
model = YOLO('yolov8n.pt')  # 你可以选择其他模型,例如yolov8s.pt, yolov8m.pt等
image_path = 'test-img/ms.jpg'  # 替换为你的图像路径
image = cv2.imread(image_path)
# 使用模型进行检测
results = model(image)
# 筛选出标签为"person"的检测结果(COCO数据集中,类别0通常为'person')
person_results = [result for result in results[0].boxes if result.cls[0] == 0]
# 绘制检测到的"person"的边界框
for box in person_results:
    x1, y1, x2, y2 = map(int, box.xyxy[0])
    confidence = box.conf[0]
    label = f"person {confidence:.2f}"
    cv2.rectangle(image, (x1, y1), (x2, y2), (0, 0, 255), 3)
    cv2.putText(image, label, (x1, y1 - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 0, 255), 4)
# 保存结果图像
output_path_person_only = 'person_only_detected_image1.jpg'
cv2.imwrite(output_path_person_only, image)
print(f"检测结果已保存到 {output_path_person_only}")

原始检测结果

在这里插入图片描述

标签过滤后的检测结果

在这里插入图片描述

两种方法的区别

迁移学习优缺点:

优点:

  • 目标定制化: 重新训练模型可以针对特定的任务和数据集进行优化,可以更好地满足特定需求,提高模型性能和准确性。
  • 灵活性: 可以调整模型架构、超参数和训练策略,以适应不同的数据特征和应用场景,具有更大的灵活性。
  • 更适应新任务: 重新训练模型可以使其更适应新的目标类别、背景和环境变化,提高泛化能力和适应性。

缺点:

  • 时间和资源消耗: 需要花费大量时间和计算资源来重新训练模型,特别是对于大型数据集和复杂模型而言。
  • 数据标注需求: 需要大量标注好的数据集来进行重新训练,标注过程可能耗时耗力。
  • 潜在过拟合: 重新训练模型可能会导致过度拟合于新数据集,特别是当新数据集相对较小或与原始数据集有显著差异时

过滤标签的优缺点:

优点:

  • 简单快速: 只需要对已有模型的输出进行简单的标签过滤,不需要重新训练模型,过程简单快速。
  • 资源消耗低: 不需要重新分配大量的计算资源和时间,适用于资源有限或时间紧迫的情况。
  • 保留原模型特性: 可以保留原始模型在大型数据集上学到的丰富特征和知识,避免了重新训练可能带来的性能下降。

缺点:

  • 限制性: 受限于原始模型在预训练数据集上学习到的特征和知识,可能无法很好地适应新任务和数据集,性能可能受限。
  • 无法完全定制化: 无法对模型架构和参数进行定制化调整,可能无法满足特定需求。
  • 可能导致误差传播: 对于一些复杂的数据集和场景,简单的标签过滤可能会导致误差传播,影响最终的检测性能。

总结

没有最好的方法,只有最合适的方法。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1813336.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

探寻性能优化:如何衡量?如何决策?

目录 一、衡量指标说明 (一)响应时间(Response Time) 平均响应时间(Average Response Time) 百分位数响应时间(Percentile Response Time) (二)吞吐量&a…

bugku--web---baby lfi

1、题目描述 2、页面提示使用language参数 3、构造url:/?languagefr。页面有回显 4、这里提示包含关键的文件 5、构造url:/?language/etc/passwd 6、flag shellmates{10CA1_F11e_1Nc1US10n_m4y_r3ve4l_in7Er3st1nG_iNf0Rm4t1on}

2024.6.11

思维导图 代码 #include <iostream>using namespace std;//封装一个 讲解员 类 class Animal { public:Animal(){}virtual void perform(){cout << " " << endl;} };//封装一个 狮子 类 class Lion:public Animal { public:Lion(){}void pe…

BT音频方案

一、缩写 缩写 全程 释义 I2S I2S 音频传输接口总线 PCM Pulse-Code Modulation 基础音频数据或翻译为音频接口总线 HFP Handsfree 蓝牙通话协议 A2DP Advanced Audio Distribution Profile 蓝牙媒体音频协议 二、音频流转策略 蓝牙音频功能分为通话声音和媒体…

【Java】 如何设计RPC框架在10万QPS下实现毫秒级的服务调用?

一、问题解析 来思考这样一个场景&#xff1a;你的垂直电商系统的 QPS 已经达到了每秒 2 万次&#xff0c;在做了服务化拆分之后&#xff0c;由于我们把业务逻辑都拆分到了单独部署的服务中&#xff0c;那么假设你在完成一次完整的请求时需要调用 4&#xff5e;5 次服务&#…

温泉镇旅游微信小程序的设计与实现(论文+源码)_kaic

摘要 旅游业随着经济的快速发展呈现出一派欣欣向荣的景象&#xff0c;尤其是近两年来&#xff0c;各个行业运用科技以及因特网来促进旅游迅速发展&#xff0c;逐渐都显示出了的问题&#xff0c;特别突出的是在线上推广&#xff0c;其缺点也是特别明显。尽管在新冠肺炎的冲击下&…

5252DE 5G 外场通信测试仪

5252DE 5G 外场通信测试仪 集先进算法和高性能硬件于一体的便携式测试仪表 产品综述 5252DE 5G 外场通信测试仪是集合高性能频谱处理模块、多制式解析算法软件于一体的手持式测试仪表&#xff0c;具有很好的便携性、兼容性与可拓展性。 5252DE 具有工作频段宽、性能指标高…

如何分割3D模型

拆分 3D 模型进行打印可以解决许多问题。 你可以使用较小的 3D 打印机打印大型零件&#xff0c;你的零件不会出现太多翘曲&#xff0c;并且零件在清洁和后处理过程中更容易处理。 当然&#xff0c;你需要在打印后将 3D 打印部件粘合在一起&#xff0c;但对于那些无法使用大型 …

C语言 指针——字符数组与字符指针:字符串的输入和输出

目录 逐个字符输入输出字符串 整体输入输出字符串 用scanf输入/输出字符串 用gets输入/输出字符串 用scanf输入/输出字符串 用gets输入/输出字符串 逐个字符输入输出字符串 #define STR_LEN 80 char str[STR_LEN 1 ]; 整体输入输出字符串 用scanf输入/输出字符串 用gets…

拼房、行程变更、跨月退改?复杂场景对账结算怎么办?

在实际商业场景中&#xff0c;销售渠道多样化、数据关联多方、场景多元化、业务逻辑多变性等都让对账成为一门“技术活”&#xff0c;也成为财务人员面前的“拦路虎”。尤其当面临多成本中心、跨项目和跨月退改的出差费用时。手动拆分费用、协调沟通、以及处理费用归属等问题&a…

Spring—依赖注入

一、Spring框架概念 1.什么是OCP&#xff1f; OCP是软件七大开发原则当中最基本的一个原则&#xff1a;开闭原则 对什么开?对扩展开放。 对什么闭?对修改关闭。 OCP原则是最核心的&#xff0c;最基本的&#xff0c;其他的六个原则都是为这个原则服务的。 OCP开闭原则的核…

HTML5+CSS3小实例:粘性文字的滚动效果

实例:粘性文字的滚动效果 技术栈:HTML+CSS 效果: 源码: 【HTML】 <!DOCTYPE html> <html lang="zh-CN"><head><meta charset="UTF-8"><meta name="viewport" content="width=device-width, initial-sca…

二叉树oj联习

判断是否为平衡二叉树 定义 oj题目 采用递归的思想 在gaodu函数中算出左子树的高度和右子树的高度 相减进行比较 再用递归遍历左右子树 依次算出每个结点的左右子树高度比较&#xff0c;只要有一个不符合条件则不为平衡二叉树 代码展示 int gaodu(struct TreeNode* a) {i…

PHP项目跨大版本升级,兼容性检测

项目中&#xff0c;经常因为各种原因&#xff0c;需要对老旧的项目进行跨大版本升级&#xff0c;比如从7.1升级到8.1 跨大版本升级会导致项目不可控&#xff0c;运行报错&#xff0c;出BUG等等问题&#xff0c;我们介绍一款工具用来解决此问题 php-compatibility检查PHP跨版本兼…

MySQL -- 锁机制

1. 表级锁和行级锁 表级锁&#xff08;Table-level Lock&#xff09; 表级锁是对整张表进行锁定&#xff0c;通常用于需要修改大量数据的操作。表级锁的优点是开销小&#xff0c;锁定快&#xff0c;但缺点是并发性能较差&#xff0c;因为一个表一旦被锁定&#xff0c;其他事务…

从0到100:找搭子小程序开发笔记(一)

背景调查 “找搭子”小程序&#xff1a;能够解决人们在社交、休闲和约会方面的需求&#xff0c;提供方便快捷的方式来找到合适的伴侣或活动伙伴。许多人在社交场合中感到焦虑或不安&#xff0c;因此他们更倾向于使用在线平台来认识新的朋友或搭子。有些人可能生活在一个较小或…

鸿蒙开发:应用组件跨设备交互(流转)【跨端迁移】

跨端迁移 概述 在用户使用设备的过程中&#xff0c;当使用情境发生变化时&#xff08;例如从室内走到户外或者周围有更适合的设备等&#xff09;&#xff0c;之前使用的设备可能已经不适合继续当前的任务&#xff0c;此时&#xff0c;用户可以选择新的设备来继续当前的任务&a…

刷代码随想录有感(100):动态规划——不同路径

题干&#xff1a; 代码&#xff1a; class Solution { public:int uniquePaths(int m, int n) {vector<vector<int>>dp(m,vector<int>(n, 0));for(int i 0; i < m; i) dp[i][0] 1;for(int j 0; j < n; j) dp[0][j] 1;for(int i 1; i < m; i){…

程序员日志之DNF手游6月5日罗特斯入门团本

目录 传送门正文日志1、概要1、散件装备过渡2、世界领主攻略和爬塔攻略3、团本攻略4、DNF剧情收集5、新版本预告6、合成冥域天空套&#xff08;天一&#xff09;7、额外重磅消息 传送门 SpringMVC的源码解析&#xff08;精品&#xff09; Spring6的源码解析&#xff08;精品&a…

UE4_后期_ben_模糊和锐化滤镜

学习笔记&#xff0c;不喜勿喷&#xff0c;侵权立删&#xff0c;祝愿生活越来越好&#xff01; 本篇教程主要介绍后期处理的简单模糊和锐化滤镜效果&#xff0c;学习之前首先要回顾下上节课介绍的屏幕扭曲效果&#xff1a; 这是全屏效果&#xff0c;然后又介绍了几种蒙版&#…