深度神经网络——图像分类如何工作?

news2024/11/16 7:38:34

智能手机如何仅凭拍摄的照片就能识别物体?社交媒体网站又是如何自动标记照片中的人物?这些功能背后,是人工智能驱动的图像识别和分类技术。

图像识别和分类技术是人工智能领域中一些最令人瞩目的成就。但计算机是如何学会检测和分类图像的呢?本文将介绍计算机对图像进行解释和检测的一般方法,并探讨一些用于图像分类的流行技术。

像素级与基于对象的分类

图像分类技术主要可以分为两类: 基于像素的分类 和基于对象的分类。

像素是图像的基本单位,像素分析是图像分类的主要方式。 然而,分类算法可以仅使用单个像素内的光谱信息来对图像进行分类,也可以检查空间信息(附近的像素)以及光谱信息。 基于像素的分类方法仅利用光谱信息(像素的强度),而基于对象的分类方法则考虑像素光谱信息和空间信息。

有多种不同的分类技术用于基于像素的分类。 这些包括最小均值距离、最大似然度和最小马哈拉诺比斯距离。 这些方法要求已知类别的均值和方差,并且它们都通过检查类别均值和目标像素之间的“距离”来进行操作。

基于像素的分类方法受到以下事实的限制:它们不能使用来自其他附近像素的信息。 相反,基于对象的分类方法可以包括其他像素,因此它们也使用空间信息来对项目进行分类。 请注意,“对象”仅指像素的连续区域,而不指该像素区域内是否存在目标对象。

预处理图像数据以进行目标检测

最新且可靠的图像分类系统主要使用对象级分类方案,对于这些方法,必须以特定方式准备图像数据。 需要选择并预处理对象/区域。

在对图像以及该图像内的对象/区域进行分类之前,必须由计算机解释包含该图像的数据。图像需要进行预处理并准备好输入分类算法,这是通过对象检测完成的。这是准备数据和图像以训练机器学习分类器的关键部分。

物体检测是通过 多种方法和技术。 首先,是否存在多个感兴趣对象或单个感兴趣对象都会影响图像预处理的处理方式。 如果只有一个感兴趣的对象,则对图像进行图像定位。 组成图像的像素具有由计算机解释并用于显示正确的颜色和色调的数值。 在感兴趣的对象周围绘制一个称为边界框的对象,这有助于计算机了解图像的哪些部分是重要的以及哪些像素值定义了该对象。 如果图像中有多个感兴趣的对象,则使用一种称为对象检测的技术将这些边界框应用于图像中的所有对象。

另一种预处理方法是图像分割。 图像分割功能通过根据相似特征将整个图像划分为多个片段。 与图像的其他区域相比,图像的不同区域将具有相似的像素值,因此这些像素被分组到与图像内相关对象的形状和边界相对应的图像掩模中。 图像分割帮助计算机隔离图像的特征,这将有助于它对对象进行分类,就像边界框所做的那样,但它们提供了更准确的像素级标签。

完成对象检测或图像分割后,将标签应用于相关区域。 这些标签与构成对象的像素值一起被输入到机器学习算法中,该算法将学习与不同标签相关的模式。

机器学习算法

一旦数据准备好并标记,数据就会被输入到机器学习算法中,该算法对数据进行训练。 我们将介绍一些最常见的机器学习类型 图像分类算法 联络一位教师

K最近邻居

K 最近邻是一种分类算法,它检查最接近的训练示例并查看它们的标签以确定给定测试示例的最可能的标签。 当使用 KNN 进行图像分类时,训练图像的特征向量和标签会被存储,并且在测试期间仅将特征向量传递到算法中。 然后比较训练和测试特征向量的相似性。

基于 KNN 的分类算法非常简单,并且可以轻松处理多个类别。 然而,KNN 平等地基于所有特征计算相似度。 这意味着当提供的图像中只有一部分特征对于图像的分类很重要时,很容易出现错误分类。

支持向量机

支持向量机是一种分类方法,它将点放置在空间中,然后在点之间绘制分割线,根据点落在分割平面的哪一侧将对象放置在不同的类中。 支持向量机能够通过使用称为核技巧的技术进行非线性分类。 虽然 SVM 分类器通常非常准确,但 SVM 分类器的一个重大缺点是它们往往受到大小和速度的限制,随着大小的增加,速度会受到影响。

多层感知器(神经网络)

多层感知器,也称为神经网络模型,是受人脑启发的机器学习算法。 多层感知器由相互连接在一起的各个层组成,就像人脑中的神经元连接在一起一样。 神经网络对输入特征与数据类别的关系做出假设,并且这些假设在训练过程中进行调整。 像多层感知器这样的简单神经网络模型能够学习非线性关系,因此,它们比其他模型更准确。 然而,MLP 模型存在一些值得注意的问题,例如存在非凸损失函数。

深度学习算法 (CNN)

近年来最常用的图像分类算法是卷积神经网络(CNN)。 CNN 是神经网络的定制版本,它将多层神经网络与专用层相结合,能够提取与对象分类最重要且相关的特征。 CNN 可以自动发现、生成和学习图像特征。这大大减少了手动标记和分割图像以准备机器学习算法的需要。它们还比 MLP 网络有优势,因为它们可以处理非凸损失函数。

卷积神经网络因其创建“卷积”而得名。 CNN 的工作原理是采用过滤器并将其滑过图像。 您可以将其视为通过可移动的窗口查看景观的各个部分,只关注在任何时间通过窗口可以看到的特征。 过滤器包含与像素本身的值相乘的数值。 结果是一个新的帧或矩阵,其中充满了代表原始图像的数字。 对于选定数量的滤波器重复此过程,然后将帧连接在一起形成比原始图像稍小且不太复杂的新图像。 一种称为池化的技术用于仅选择图像中最重要的值,目标是卷积层最终提取图像中最显着的部分,这将有助于神经网络识别图像中的对象。

卷积神经网络 由两个不同的部分组成。 卷积层提取图像的特征并将其转换为神经网络层可以解释和学习的格式。 早期的卷积层负责提取图像的最基本元素,例如简单的线条和边界。 中间的卷积层开始捕获更复杂的形状,例如简单的曲线和角。 后来的更深的卷积层提取图像的高级特征,这些特征被传递到 CNN 的神经网络部分,也是分类器学习的内容。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1812773.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

Docker系列.Docker Desktop中如何启用Kubernetes

Docker技术概论 Docker Desktop中如何启用Kubernetes - 文章信息 - Author: 李俊才 (jcLee95) Visit me at CSDN: https://jclee95.blog.csdn.netMy WebSite:http://thispage.tech/Email: 291148484163.com. Shenzhen ChinaAddress of this article:https://blog.…

专硕初试科目一样,但各专业的复试线差距不小!江南大学计算机考研考情分析!

江南大学物联网工程学院,是由江南大学信息工程学院和江南大学通信与控制工程学院,于2009年合并组建成立“物联网工程学院”,也是全国第一个物联网工程学院。 江南大学数字媒体学院是以江南大学设计学院动画系和信息工程学院数字媒体技术系为…

开门预警系统技术规范(简化版)

开门预警系统技术规范(简化版) 1 系统概述2 预警区域3 预警目标4 功能需求5 功能条件6 显示需求7 指标需求1 系统概述 开门预警系统(DOW),在自车停止开门过程中,安装在车辆的传感器(如安装在车辆后保险杆两个角雷达)检测从自车后方接近的目标车(汽车、摩托车等)的相对…

实现钉钉扫码登陆

在钉钉开放平台查看:实现登录第三方网站 - 钉钉开放平台 1、在开发者后台创建应用,创建完应用之后,拿到应用的AppKey和AppSecret。 2、添加接口权限 3、配置frp内网穿透:(当第四步使用回调域名的重定向地址时&#xf…

关于flutter 启动 页面加载空白(三四秒空白页面)

一:可以在 对应的xml配置启动动画 <item><bitmapandroid:gravity"center"android:src"mipmap/ic_launcher" /></item> 二&#xff1a;以下是对应的文件目录 注意事项&#xff1a;俩处xml都配置一下&#xff0c;配置一样就可以了

那些年我看过的技术书(持续更新,大佬的成长之路)

作为一个技术人啊&#xff0c;要学会多看书&#xff0c;发展自己。哦也&#xff01;你可以不关注&#xff0c;就把文章点个收藏吧&#xff0c;万一以后想看书了呢&#xff1f; 网络安全 CTF篇 入门篇 《极限黑客攻防&#xff1a;CTF赛题揭秘》 Web篇 Reserve篇 《IDApro…

小白学RAG:大模型 RAG 技术实践总结

节前&#xff0c;我们组织了一场算法岗技术&面试讨论会&#xff0c;邀请了一些互联网大厂朋友、今年参加社招和校招面试的同学。 针对大模型技术趋势、大模型落地项目经验分享、新手如何入门算法岗、该如何准备面试攻略、面试常考点等热门话题进行了深入的讨论。 汇总合集…

【人工智能基础学习】Andrew Ng-机器学习基础笔记

⭐️我叫忆_恒心&#xff0c;一名喜欢书写博客的研究生&#x1f468;‍&#x1f393;。 如果觉得本文能帮到您&#xff0c;麻烦点个赞&#x1f44d;呗&#xff01; 近期会不断在专栏里进行更新讲解博客~~~ 有什么问题的小伙伴 欢迎留言提问欧&#xff0c;喜欢的小伙伴给个三连支…

Python实现音乐播放器 -----------内附源码

Python做一个简易的音乐播放器 简易音乐播放器 import time import pygamefile r歌曲路径 pygame.mixer.init() print(正在播放,file) track pygame.mixer.music.load(file) pygame.mixer.music.play() time.sleep(130) pygame.mixer.music.stop()运行效果&#xff1a; 开始…

档案数字化扫描录入整理流程

档案数字化扫描录入整理流程可以分为以下几个步骤&#xff1a; 1. 确定扫描设备和软件&#xff1a;选择适合的扫描设备和软件&#xff0c;确保扫描质量和效率。 2. 准备档案文件&#xff1a;将待扫描的档案文件按照一定的分类和顺序进行整理和准备&#xff0c;如编号、分类、日…

数值计算精度问题(浮点型和双整型累加精度测试)

这篇博客介绍双整型和浮点数累加精度问题,运动控制轨迹规划公式有大量对时间轴的周期累加过程,如果我们采用浮点数进行累加,势必会影响计算精度。速度的不同 进一步影响位置积分运算。轨迹规划相关问题请参考下面系列文章,这里不再赘述: 1、博途PLC 1200/1500PLC S型速度曲…

英伟达SSD视觉算法分类代码解析

一、官方原代码 #!/usr/bin/env python3 # # Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved. # # Permission is hereby granted, free of charge, to any person obtaining a # copy of this software and associated documentation files (the "Softwa…

计算机毕业设计 | SSM 校园线上订餐系统 外卖购物网站(附源码)

1&#xff0c; 概述 1.1 项目背景 传统的外卖方式就是打电话预定&#xff0c;然而&#xff0c;在这种方式中&#xff0c;顾客往往通过餐厅散发的传单来获取餐厅的相关信息&#xff0c;通过电话来传达自己的订单信息&#xff0c;餐厅方面通过电话接受订单后&#xff0c;一般通…

UPerNet 统一感知解析:场景理解的新视角 Unified Perceptual Parsing for Scene Understanding

论文题目&#xff1a;统一感知解析&#xff1a;场景理解的新视角 Unified Perceptual Parsing for Scene Understanding 论文链接&#xff1a;http://arxiv.org/abs/1807.10221(ECCV 2018) 代码链接&#xff1a;https://github.com/CSAILVision/unifiedparsing 一、摘要 研究…

Java多线程之不可变对象(Immutable Object)模式

简介 多线程共享变量的情况下&#xff0c;为了保证数据一致性&#xff0c;往往需要对这些变量的访问进行加锁。而锁本身又会带来一些问题和开销。Immutable Object模式使得我们可以在不加锁的情况下&#xff0c;既保证共享变量访问的线程安全&#xff0c;又能避免引入锁可能带…

如何用二维码进行来访登记?这个模板帮你轻松实现!

在工厂、学校、写字楼、建筑工地等人员出入频繁的场所&#xff0c;使用传统的纸质登记方法容易造成数据丢失&#xff0c;而且信息核对过程繁琐&#xff0c;效率低下。 可以用二维码代替纸质登记本&#xff0c;访客进入时扫码就能登记身份信息&#xff0c;能够提高门岗访客管理…

微生信神助力:在线绘制发表级主成分分析(PCA)图

主成分分析&#xff08;Principal components analysis&#xff0c;PCA&#xff09;是一种线性降维方法。它利用正交变换对一系列可能相关的变量的观测值进行线性变换&#xff0c;从而投影为一系列线性不相关变量的值&#xff0c;这些不相关变量称为主成分&#xff08;Principa…

JMH309【亲测】典藏3D魔幻端游【剑踪3DⅢ】GM工具+开区合区工具+PC客户端+配置修改教程+Win一键服务端+详细外网视频教程

资源介绍&#xff1a; 经典不错的一款端游 GM工具开区合区工具PC客户端配置修改教程Win一键服务端详细外网视频教程 资源截图&#xff1a; 下载地址

数字化医疗:揭秘物联网如何提升医院设备管理效率!

在当今数字化时代&#xff0c;医疗领域正迎来一场技术变革的浪潮&#xff0c;而基于物联网的智慧医院医疗设备管理体系正是这场变革的闪耀之星。想象一下&#xff0c;医院里的每一台医疗设备都能像一位精密的工匠一样&#xff0c;自动监测、精准诊断&#xff0c;甚至在发生故障…

GitLab教程(三):多人合作场景下如何pull代码和处理冲突

文章目录 1.拉取别人同步的代码到本地的流程2.push冲突发生场景情景模拟简单的解决方法 在这一章中&#xff0c;为了模拟多人合作的场景&#xff0c;我需要一个人分饰两角。 执行git clone xx远端仓库地址 xx文件夹命令&#xff0c;在clone代码时指定本地仓库的文件夹名&#…