自动驾驶---Perception之视觉点云雷达点云

news2025/1/16 6:02:17

1 前言

        在自动驾驶领域,点云技术的发展历程可以追溯到自动驾驶技术的早期阶段,特别是在环境感知和地图构建方面。

        在自动驾驶技术的早期技术研究中,视觉点云和和雷达点云都有出现。20世纪60年代,美国MIT的Roberts从2D图像中提取3D多面体,这被认为是3D计算机视觉研究的开端。随后激光雷达作为一种关键的传感器被广泛应用于环境感知和障碍物检测。激光雷达通过发射激光束并接收反射回来的信号,生成点云数据,从而提供周围环境的三维信息。早期的研究主要集中在如何有效地处理和分析这些点云数据,以实现对周围环境的准确感知和理解。

        随着自动驾驶技术的不断发展,点云处理技术也得到了显著的进步。研究人员提出了各种算法和方法,用于点云的分割、分类、物体检测、跟踪和地图构建等任务。其中,深度学习技术的引入为点云处理带来了革命性的变化。深度学习模型,特别是卷积神经网络(CNN)和点云处理网络(如PointNet、PointNet++等),以及后来的Transformer能够自动学习点云数据的特征表示,并实现对周围环境的更准确感知和理解。

2 点云介绍

2.1 点云技术概述

        点云是将大量离散的三维坐标点组成的数据集,每个点代表空间中的一个位置。在自动驾驶中,激光雷达等传感器收集到的环境信息通常以点云的形式表示。点云数据包含了车辆周围环境的三维信息,如物体的形状、位置、大小等。

2.2 点云技术的优缺点

(1)优点

  • 高度灵活性:点云可以用于表示任何类型的三维形状,包括不规则形状,提供了极高的表达自由度。
  • 数据密度可变性:点云的密度可以非常不同,从只包含一个点到包含数百万个数据点的高密度点云,这种灵活性使得点云技术可以适应不同的应用需求。
  • 附加信息丰富性:除了基本的三维坐标外,点云数据还可能包含其他属性,如颜色、分类值、强度值和时间等,这些附加信息为后续处理提供了更多的可能性。
  • 三维空间表达:点云可以准确地表达物体的空间轮廓和具体位置,提供了物体与摄像机之间的距离信息。
  • 视角无关性:点云本身和视角无关,可以任意旋转,从不同角度和方向观察一个点云,而且不同的点云只要在同一个坐标系下就可以直接融合。

(2)缺点

  • 数据处理的复杂性:三维点云相比二维图像多了一个维度,即深度,这增加了数据处理的复杂性。同时,点云是不规则分布的,相比于图像式的规整网格更难处理。
  • 信息丢失问题:点云由离散的点组成,相比于连续的图像,它缺少了纹理信息,这可能导致在处理过程中丢失一些重要信息。
  • 数据采集与处理的挑战:在采集点云数据时,可能会得到散乱的点云,这些点之间缺乏明确的拓扑关系,导致近邻搜索的效率较低。同时,由于环境和设备的影响,点云数据中可能会出现噪声。此外,采集得到的点云数据量往往较大,需要进一步精简才能满足后续算法处理的需要。
  • 法向量估计与调整的困难:点云的法向量估计与调整是许多高级点云处理算法的基础。然而,目前存在的多种法向量估计算法具有不同的效率和性能,以及各自适用的应用场景。同时,面向普通工件的法向量调整算法效率也较低。
  • 曲面重建的局限性:传统的曲面重建算法往往不会考虑尖锐特征,这可能导致重建后的尖锐特征变得光滑,从而使点云整体重建的精度降低。

2.3 点云技术在自动驾驶中的应用

  • 障碍物检测与识别:通过点云算法对激光雷达采集到的点云数据进行分割和分类,识别出行人、车辆、自行车等障碍物,为自动驾驶系统提供精确的感知信息。
  • 道路分割与车道线检测:通过分析点云数据中的几何特征和反射强度等信息,提取出道路区域并检测车道线的位置和形状。
  • 环境建模与感知:提供高精度的环境感知和建模能力,建立周围环境的三维模型,包括道路、建筑物、交通标志等元素。
  • 地图构建与定位:通过融合和配准多个时间步的点云数据,构建高精度的三维地图,并实现车辆的定位和姿态估计。

3 视觉点云

3.1 视觉点云技术介绍

        视觉点云技术是一种重要的三维数据获取和处理方法,它结合了计算机视觉和点云技术的优势,为三维空间信息的获取提供了有效手段。

        视觉点云技术的基本原理是通过光电系统(如照相机)获取图像,并根据计算机视觉的原理从图像中计算出三维孤立点信息。这通常涉及到对图像进行特征提取、匹配和三维重建等步骤。通过这些步骤,可以从二维图像中恢复出三维空间结构,并生成点云数据。

        视觉点云技术具有一些独特的优势。首先,它能够利用丰富的图像信息来生成点云数据,包括颜色、纹理等特征,这使得点云数据更加真实和详细。其次,视觉点云技术可以通过多视图图像来增强点云的完整性和精度,通过结合多个视角的图像信息,可以得到更加全面和准确的三维空间信息。此外,随着计算机视觉技术的不断发展,视觉点云技术在处理速度、自动化程度以及数据处理精度等方面也在不断提升。

        视觉点云技术在许多领域都有广泛的应用。例如,在机器人导航和自动驾驶领域,视觉点云技术可以用于环境感知和障碍物检测,为机器人或车辆提供精确的三维空间信息,实现精准导航和运动规划。在增强现实和虚拟现实领域,视觉点云数据可以构建真实的三维环境,与虚拟对象进行融合,创造沉浸式的交互体验。此外,视觉点云技术还可以应用于建筑设计与管理、机器视觉与目标识别、三维测绘与监测等领域,为各种应用提供准确、可靠的三维数据支持。

        视觉点云技术虽然也面临一些挑战和限制(例如,光照条件、遮挡和纹理缺乏等因素可能影响视觉点云的精度和完整性,大规模点云数据的处理和分析也需要较高的计算资源和算法支持),但是视觉点云技术是一种重要的三维数据获取和处理方法,具有广泛的应用前景。随着技术的不断进步和算法的优化,视觉点云技术将在更多领域发挥重要作用,为我们的生活和工作带来更多便利和创新。

3.2 视觉点云技术应用

        视觉点云技术在自动驾驶领域的应用具有重要地位,为车辆提供了高精度、实时的环境感知能力。以下是关于视觉点云技术在自动驾驶应用中的详细介绍:

  • 环境感知与障碍物检测

        视觉点云技术通过捕捉车辆周围环境的图像,并从中提取出三维点云数据,使得自动驾驶系统能够精准地感知周围环境。这些点云数据包含了道路、车辆、行人、建筑物等元素的详细信息,使得自动驾驶车辆能够实时识别并跟踪这些障碍物。通过对点云数据的分析,系统可以判断障碍物的位置、大小、形状和运动状态,从而为车辆提供及时的避障和制动措施,确保行驶的安全性。

68cd93ee10f448b28d3c9daf801f4244.png

  • 道路分割与车道线检测

        利用视觉点云技术,自动驾驶系统可以实现对道路的精确分割和车道线的检测。通过对点云数据的处理和分析,系统能够识别出道路的边缘、车道线以及不同区域的界限,从而为车辆提供准确的导航信息。这对于自动驾驶车辆在复杂道路环境中的行驶至关重要,有助于车辆保持正确的行驶轨迹,避免偏离车道或发生其他危险情况。

693a1af0ad764939979a48ba2015b9fe.png

  • 高精度地图构建与定位

        视觉点云技术还可以用于构建高精度地图,并为自动驾驶车辆提供精确的定位信息。通过对大量点云数据的采集和处理,可以生成包含丰富地理信息的三维地图,包括道路结构、交通标志、障碍物位置等。这些地图信息可以用于辅助自动驾驶系统的决策规划,提高车辆行驶的安全性和可靠性。同时,视觉点云技术还可以实现车辆的高精度定位,通过与地图信息的匹配,确定车辆在道路上的准确位置,为自动驾驶提供关键的支持。

  • 夜间与恶劣天气下的应用

        相比其他传感器,视觉点云技术对于光照条件的依赖度较低,因此在夜间或恶劣天气下也能保持较好的感知性能。这意味着自动驾驶车辆在光线不足或恶劣天气条件下,仍能通过视觉点云技术获取到足够的环境信息,保证车辆的安全行驶。

        视觉点云技术在自动驾驶领域的应用为车辆提供了强大的环境感知能力,使得自动驾驶系统能够更加精准地识别障碍物、检测道路信息,并构建高精度地图,为自动驾驶的普及和发展提供了有力的支持。随着技术的不断进步和算法的优化,视觉点云技术在自动驾驶领域的应用将会更加广泛和深入。

4 LiDAR 点云

4.1 LiDAR点云技术介绍

        LiDAR(Light Detection and Ranging,激光雷达)点云技术是一种利用激光雷达设备获取空间点云数据的技术。它通过向目标发射激光脉冲并测量其反射回来的时间,结合发射角度和距离信息,精确计算出目标上点的三维坐标,从而生成点云数据

        LiDAR点云技术具有许多显著的优势。首先,它具有高精度和高分辨率的特点,能够获取详细而准确的三维空间信息。其次,LiDAR设备不受光照条件的影响,可以在各种环境条件下进行数据采集,包括夜间、阴天或高亮度区域。此外,LiDAR技术还具有较强的穿透能力,能够部分地穿透树林、建筑物等遮挡物,获取被遮挡部分的真实地形信息。

        在LiDAR点云数据的获取过程中,激光雷达设备通过快速旋转并发射激光脉冲,扫描周围环境并收集反射信号。然后,通过一系列的数据处理步骤,包括滤波、配准、分割和分类等,将原始的点云数据转化为可用于后续分析和应用的形式。这些处理步骤有助于提高点云数据的质量和可用性,使其更适合于各种应用场景。

        LiDAR点云技术在多个领域具有广泛的应用。在测绘领域,它可以用于地形测绘、建筑物测量和城市规划等方面,提供高精度的三维地形数据。在环境监测领域,LiDAR点云技术可以用于森林覆盖监测、植被变化分析和地形变化检测等任务,帮助人们更好地了解自然环境的演变过程。此外,在自动驾驶和机器人导航领域,LiDAR点云技术也发挥着重要作用,用于实现精准的环境感知和障碍物检测。

        LiDAR点云技术也存在一些挑战和限制。例如,设备的成本较高,且数据处理和分析需要较高的计算资源和专业技能。此外,对于某些特殊环境或目标,如高反射表面或透明物体,LiDAR技术的测量精度可能受到一定限制。总体来看,LiDAR点云技术是一种高效、准确的三维数据获取方法,具有广泛的应用前景。随着技术的不断进步和成本的降低,它将在更多领域发挥重要作用,为我们的生活和工作带来更多便利和创新。

b29687d7ac55421fa2b90ddeb2db84d0.png

4.2 LiDAR点云技术应用

        LiDAR(Light Detection and Ranging,激光雷达)点云技术在自动驾驶领域的应用至关重要,为车辆提供了精确、实时的环境感知能力。以下是关于LiDAR点云技术在自动驾驶中的详细应用介绍:

  • 高精度环境感知

        LiDAR点云技术通过发射激光脉冲并测量其反射时间,获取车辆周围环境的精确三维点云数据。这些数据不仅包含物体的位置信息,还能反映物体的形状、大小等特征。因此,自动驾驶车辆能够利用LiDAR点云数据实时感知道路、车辆、行人、障碍物等周围环境信息,为决策规划提供关键输入。

  • 障碍物检测与避障

        通过LiDAR点云技术,自动驾驶车辆能够精确地识别并跟踪周围的障碍物。系统可以根据点云数据的密度和反射强度等信息,判断障碍物的类型、位置和运动状态。当检测到潜在危险时,车辆可以迅速作出反应,采取避障措施,确保行驶安全。

  • 高精度地图构建与定位

        LiDAR点云技术可用于构建高精度地图,这对于自动驾驶车辆来说至关重要。通过采集大量的点云数据,并结合其他传感器信息,可以生成包含丰富地理信息的三维地图。这些地图不仅可以帮助车辆实现精确定位,还可以为路径规划和导航提供关键支持。同时,结合SLAM(同时定位与地图构建)技术,车辆还可以实时更新地图信息,适应不断变化的环境。

  • 道路分割与车道线检测

        利用LiDAR点云技术,自动驾驶车辆可以精确地分割道路并检测车道线。通过分析点云数据的分布和特征,系统可以识别出道路的边缘、车道线以及不同区域的界限。这些信息有助于车辆保持正确的行驶轨迹,避免偏离车道或发生其他危险情况。

  • 多传感器融合

        在自动驾驶系统中,LiDAR点云技术通常与其他传感器(如相机、毫米波雷达等)进行融合使用。通过融合多种传感器的数据,可以提高环境感知的准确性和可靠性。例如,相机可以提供丰富的颜色和纹理信息,而LiDAR则可以提供精确的距离和深度信息。通过将这些信息相结合,自动驾驶车辆可以更好地理解周围环境,并作出更准确的决策。

  • 夜间与恶劣天气下的应用

        LiDAR点云技术不受光照条件的影响,因此在夜间或恶劣天气下仍能保持良好的感知性能。这使得自动驾驶车辆在光线不足或恶劣天气条件下仍能准确感知周围环境,确保行驶安全。       

        LiDAR点云技术在自动驾驶领域的应用为车辆提供了强大的环境感知能力,有助于实现更安全、更可靠的自动驾驶。随着技术的不断进步和成本的降低,LiDAR点云技术将在自动驾驶领域发挥越来越重要的作用。

        下图是融合了视觉和激光雷达的数据,得到最终的环境信息。

08b0262a8f6e4aaabb027620cd1d5755.png

5 总结与展望

        目前的自动驾驶技术发展中,视觉信息基本都是通过特征提取之后进行模型训练学习,得到想要的信息;而Lidar的点云信息目前应用还比较广泛,可直接通过点云构建的数据进行模型训练得到障碍物信息,也可从点云中提取有效信息构建障碍物。

        随着自动驾驶技术的不断发展,点云技术将继续发挥重要作用。未来,点云技术将与传感器数据(如摄像头、雷达)进行更紧密的融合,以提供更全面和准确的环境感知。此外,随着深度学习等先进技术的不断应用,点云处理算法的性能将进一步提升,为自动驾驶系统提供更强大的支持。

 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1810516.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

Vuepress 2从0-1保姆级进阶教程——标准化流程(Tailwindcss+autoprefixer+commitizen)

Vuepress 2 专栏目录【已完结】 1. 入门阶段 Vuepress 2从0-1保姆级入门教程——环境配置篇Vuepress 2从0-1保姆级入门教程——安装流程篇Vuepress 2从0-1保姆级入门教程——文档配置篇Vuepress 2从0-1保姆级入门教程——主题与部署 2.进阶阶段 Vuepress 2从0-1保姆级进阶教程—…

【递归+二叉树思想+搜索】 Alice and the Cake题解

Alice and the Cake题解 AC记录:记录-洛谷 题面翻译(大概就是题目大意) 执行恰好 n − 1 n-1 n−1 次操作,每次操作可以选择当前所有蛋糕中满足其重量 w ⩾ 2 w\geqslant 2 w⩾2 的一块,然后将其分为质量分别为 …

vue + vite 图标导入总结

vue vite 图标导入总结 SVG 的使用 在页面中我们会使用到各种图标,为了保证图标在放大缩小不失真,通常会采用 SVG 来作为图标。 SVG(Scalable Vector Graphics)是一种基于XML的矢量图像格式,它可以用来创建清晰的、…

计算机组成原理之计算机的性能指标

目录 计算机的性能指标 复习提示 1.计算机的主要性能指标 1.1机器字长 1.1.1与机器字长位数相同的部件 1.2数据通路带宽 1.3主存容量 1.4运算速度 1.4.1提高系统性能的综合措施 1.4.2时钟脉冲信号和时钟周期的相关概念 1.4.3主频和时钟周期的转换计算 1.4.4IPS的相关…

图神经网络实战(13)——经典链接预测算法

图神经网络实战(13)——经典链接预测算法 0. 前言1. 链接预测2. 启发式技术2.1 局部启发式技术2.2 全局启发式技术 3. 矩阵分解小结系列链接 0. 前言 链接预测 (Link prediction) 可以帮助我们理解和挖掘图中的关系,并在社交网络、推荐系统等…

javaweb请求响应+@ResponseBody注解

这里用了一款接口测试软件postman 简单参数 SpringBoot方式 简单参数:参数名与形参变量名相同,定义形参即可接收参数。 请求参数名与方法形参变量名相同 会自动进行类型转换 package com.example.springbootwebreqresp.Controller;import org.springframework.w…

Go微服务: 理解分布式锁

概述 我们先看一个场景,到了双11,我们的商户又开始卖商品啦但是,我们的库存是有限的,如果超卖了,可能平台就会涉及相关法律责任了所以,我们的库存扣除问题,一定是一个非常经典的问题 先看上图&…

《Vue》系列文章目录

Vue (发音为 /vjuː/,类似 view) 是一款用于构建用户界面的 JavaScript 框架。它基于标准 HTML、CSS 和 JavaScript 构建,并提供了一套声明式的、组件化的编程模型,帮助你高效地开发用户界面。无论是简单还是复杂的界面,Vue 都可以…

实现3-8译码器①

描述 下表是74HC138译码器的功能表. E3 E2_n E1_n A2 A1 A0 Y0_n Y1_n Y2_n Y3_n Y4_n Y5_n Y6_n Y7_n x 1 x x x x 1 1 1 1 1 1 1 1 x x 1 x x x 1 1 1 1 1 1 1 1 0 x x x x x 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 …

C语言之argc、argv与main函数的传参

一 :谁给main函数传参 (1)调用main函数所在的程序的它的父进程给main函数传参,并且接收main函数的返回值 二 :为什么需要给main函数传参 (1)首先mian函数不传承是可以的,也就是说它的…

01-Linux网络设置

1、查看及测试网络 查看及测试网络配置是管理Linux网络服务的第一步,其中的大多数命令以普通用户的权限就可以完成操作,但普通用户在执行/sbin目录中的命令时需要指定命令文件的决对路径。 1.1 查看网络接口地址 主机的网卡通常称为网络接口&#xff…

轻松驾驭视频节奏:灵活调整视频播放速度,让视频内容更出彩!

视频已经成为了我们生活中不可或缺的一部分。无论是观看电影、电视剧,还是浏览短视频、直播内容,我们都希望能够根据自己的喜好和需求来调整视频的播放速度,甚至精确控制每一秒的播放内容。那么,如何轻松实现这一愿望呢&#xff1…

torchmetrics,一个无敌的 Python 库!

更多Python学习内容:ipengtao.com 大家好,今天为大家分享一个无敌的 Python 库 - torchmetrics。 Github地址:https://github.com/Lightning-AI/torchmetrics 在深度学习和机器学习项目中,模型评估是一个至关重要的环节。为了准确…

Springboot结合redis实现关注推送

关注推送 Feed流的模式 Timeline:不做内容筛选,简单的按照内容发布时间排序。常用于好友与关注。例如朋友圈的时间发布排序。 优点:信息全面,不会有缺失。并且实现也相对简单 缺点:信息噪音较多,用户不一定感兴趣,内容获取效率…

打造精细化运维新玩法(三)

实践SLO,概括下就是在相对标准、统一的框架下指导和推动服务质量的数字化建设,形成对组织有价值的数据资产和流程规范。借用在人工智能和机器学习领域的观点,算法的上限受限于数据质量的好坏,所以从源头上建设高质量的数据非常重要…

【电赛】STM32-PID直流减速电机小车【寻迹+避障+跟随】【更新ing】

一.需求分析 1.主控:STM32C8T6(没什么好说的哈哈) 2.电机:JAG25-370电机 【问】为什么要用直流减速电机?? PID控制器需要依靠精确的反馈信号来调整其输出,确保电机按照预定的速度和位置运行…

独立游戏之路:Tap篇 -- Unity 集成 TapTap 广告详细步骤

Unity 集成 TapADN 广告详细步骤 前言一、TapTap 广告介绍二、集成 TapTap 广告的步骤2.1 进入广告后台2.2 创建广告计划2.3 选择广告类型三、代码集成3.1 下载SDK3.2 工程配置3.3 源码分享四、常见问题4.1 有展现量没有预估收益 /eCPM 波动大?4.2 新建正式媒体找不到预约游戏…

介绍Linux

目录 1.什么是操作系统 2.现实生活中的操作系统 3.操作系统的发展史 4.操作系统的发展 Linux的不同版本以及应用领域 1.Linux内核及发行版介绍 <1>Linux内核版本 <2>Linux发行版本 2.应用领域 个⼈桌⾯领域的应⽤ 服务器领域 嵌⼊式领域 3.文件和目录 …

HDFS 读写数据流程

优质博文&#xff1a;IT-BLOG-CN 一、HDFS 写数据流程 HDFS 文件写入流程图如下&#xff1a;三个模块&#xff08;客户端、NameNode、DataNode&#xff09; 【1】校验&#xff1a; 客户端通过 DistributedFileSystem 模块向 NameNode 请求上传文件&#xff0c;NameNode 会检…

Vue 面试通杀秘籍

理论篇&#xff1a; 1. 说说对 Vue 渐进式框架的理解&#xff08;腾讯医典&#xff09; a) 渐进式的含义&#xff1a; 主张最少, 没有多做职责之外的事 b) Vue 有些方面是不如 React&#xff0c;不如 Angular.但它是渐进的&#xff0c;没有强主张&#xff0c; 你可以在原有…