【研发日记】Matlab/Simulink软件优化(三)——利用NaNFlag为数据处理算法降阶

news2024/11/8 18:43:34

文章目录

前言

背景介绍

初始算法

优化算法

分析和应用

总结


前言

        见《【研发日记】Matlab/Simulink软件优化(一)——动态内存负荷压缩》

        见《【研发日记】Matlab/Simulink软件优化(二)——通信负载柔性均衡算法》

背景介绍

        在一个嵌入式软件开发项目中,需要开发一个数据处理算法,功能是求解一个动态变化数组的平均值、极值和极值位号,并且具备动态剔除个别元素(元素序列不变)的功能。示例如下:

数组:2、4、6、8、10

剔除:第1个元素、第3个元素

求均值:(4 + 8 + 10)/ 3 = 7.3

求最小值:4

求最小值位号:2

求最大值:10

求最大值位号:5

初始算法

        一开始算法开发的思路非常简单,就是根据上述示例把求解过程拆分成两步,第一步构建剔除特定元素后的新数组,第二步分别求解统计结果,示例如下:

        以上模型生成的代码如下:

#include "untitled.h"
#include "untitled_private.h"

/* External outputs (root outports fed by signals with default storage) */
ExtY_untitled_T untitled_Y;

/* Real-time model */
static RT_MODEL_untitled_T untitled_M_;
RT_MODEL_untitled_T *const untitled_M = &untitled_M_;

/* Model step function */
void untitled_step(void)
{
  real_T Array_min[5];
  real_T ArrayIndex;
  int32_T b_idx;
  int32_T b_k;
  int32_T e_k;
  int32_T i;

  /* MATLAB Function: '<Root>/MATLAB Function' incorporates:
   *  Constant: '<Root>/Constant'
   */
  for (i = 0; i < 5; i++) {
    Array_min[i] = untitled_ConstP.Constant_Value[i];
  }

  Array_min[0] = 255.0;
  Array_min[2] = 255.0;
  untitled_Y.Out2 = 255.0;
  b_idx = 1;
  for (b_k = 1; b_k + 1 < 6; b_k++) {
    if (untitled_Y.Out2 > Array_min[b_k]) {
      untitled_Y.Out2 = Array_min[b_k];
      b_idx = b_k + 1;
    }
  }

  for (i = 0; i < 5; i++) {
    Array_min[i] = untitled_ConstP.Constant_Value[i];
  }

  Array_min[0] = 0.0;
  Array_min[2] = 0.0;
  untitled_Y.Out4 = 0.0;
  b_k = 1;
  for (i = 1; i + 1 < 6; i++) {
    if (untitled_Y.Out4 < Array_min[i]) {
      untitled_Y.Out4 = Array_min[i];
      b_k = i + 1;
    }
  }

  for (i = 0; i < 5; i++) {
    Array_min[i] = 0.0;
  }

  ArrayIndex = 0.0;
  for (i = 0; i < 5; i++) {
    if ((i + 1 != 1) && (i + 1 != 3)) {
      ArrayIndex++;
      Array_min[(int32_T)ArrayIndex - 1] = untitled_ConstP.Constant_Value[i];
    }
  }

  if (1.0 > ArrayIndex) {
    i = -1;
  } else {
    i = (int32_T)ArrayIndex - 1;
  }

  if ((int8_T)(i + 1) == 0) {
    ArrayIndex = 0.0;
  } else if ((int8_T)(i + 1) == 0) {
    ArrayIndex = 0.0;
  } else {
    ArrayIndex = Array_min[0];
    for (e_k = 2; e_k <= (int8_T)(i + 1); e_k++) {
      ArrayIndex += Array_min[e_k - 1];
    }
  }

  /* Outport: '<Root>/Out1' incorporates:
   *  MATLAB Function: '<Root>/MATLAB Function'
   */
  untitled_Y.Out1 = ArrayIndex / (real_T)(int8_T)(i + 1);

  /* Outport: '<Root>/Out3' incorporates:
   *  MATLAB Function: '<Root>/MATLAB Function'
   */
  untitled_Y.Out3 = b_idx;

  /* Outport: '<Root>/Out5' incorporates:
   *  MATLAB Function: '<Root>/MATLAB Function'
   */
  untitled_Y.Out5 = b_k;
}

/* Model initialize function */
void untitled_initialize(void)
{
  /* (no initialization code required) */
}

/* Model terminate function */
void untitled_terminate(void)
{
  /* (no terminate code required) */
}

        上述代码仿真运行没有什么问题,从结果来看是符合功能需求的,示例如下:

        分析上述代码会发现构建新数组时存在一些问题。如果数组中出现大于255的值,或者小于0的负数时,算法就需要重新匹配。如果数组的Size大于5,或者剔除的个数大于2,算法也需要重新匹配。这种繁复的工作,是我们不希望看到的。

优化算法

        针对上述问题的分析和研究,发现Matlab官方提供了一个现成的函数功能,可用于剔除特定元素的数据统计算法,能让我们简化构建新数组的工作,也就免去繁复匹配算法的问题,示例如下:

        Tips:因为有NaN的存在,数组的数据类型如果不是double可能会出问题。例如NaN赋给uint8的数组是,对应元素就会变成0,再后续的求解函数中是按0对待的。

        以上模型生成的代码如下:

#include "untitled.h"
#include "untitled_private.h"

/* External outputs (root outports fed by signals with default storage) */
ExtY_untitled_T untitled_Y;

/* Real-time model */
static RT_MODEL_untitled_T untitled_M_;
RT_MODEL_untitled_T *const untitled_M = &untitled_M_;

/* Model step function */
void untitled_step(void)
{
  real_T data[5];
  real_T y;
  int32_T c_k;
  int32_T i;
  int32_T k;
  boolean_T exitg1;

  /* MATLAB Function: '<Root>/MATLAB Function' incorporates:
   *  Constant: '<Root>/Constant'
   */
  for (i = 0; i < 5; i++) {
    data[i] = untitled_ConstP.Constant_Value[i];
  }

  data[0] = (rtNaN);
  data[2] = (rtNaN);
  i = 0;
  k = 2;
  exitg1 = false;
  while ((!exitg1) && (k < 6)) {
    if (!rtIsNaN(data[k - 1])) {
      i = k;
      exitg1 = true;
    } else {
      k++;
    }
  }

  if (i == 0) {
    /* Outport: '<Root>/Out2' */
    untitled_Y.Out2 = (rtNaN);
    i = 1;
  } else {
    untitled_Y.Out2 = data[i - 1];
    for (k = i; k < 5; k++) {
      if (untitled_Y.Out2 > data[k]) {
        untitled_Y.Out2 = data[k];
        i = k + 1;
      }
    }
  }

  k = 0;
  c_k = 2;
  exitg1 = false;
  while ((!exitg1) && (c_k < 6)) {
    if (!rtIsNaN(data[c_k - 1])) {
      k = c_k;
      exitg1 = true;
    } else {
      c_k++;
    }
  }

  if (k == 0) {
    /* Outport: '<Root>/Out4' */
    untitled_Y.Out4 = (rtNaN);
    k = 1;
  } else {
    untitled_Y.Out4 = data[k - 1];
    for (c_k = k; c_k < 5; c_k++) {
      if (untitled_Y.Out4 < data[c_k]) {
        untitled_Y.Out4 = data[c_k];
        k = c_k + 1;
      }
    }
  }

  y = 0.0;
  c_k = 0;
  if (!rtIsNaN(data[1])) {
    y = data[1];
    c_k = 1;
  }

  if (!rtIsNaN(data[3])) {
    y += data[3];
    c_k++;
  }

  if (!rtIsNaN(data[4])) {
    y += data[4];
    c_k++;
  }

  /* Outport: '<Root>/Out1' incorporates:
   *  MATLAB Function: '<Root>/MATLAB Function'
   */
  untitled_Y.Out1 = y / (real_T)c_k;

  /* Outport: '<Root>/Out3' incorporates:
   *  MATLAB Function: '<Root>/MATLAB Function'
   */
  untitled_Y.Out3 = i;

  /* Outport: '<Root>/Out5' incorporates:
   *  MATLAB Function: '<Root>/MATLAB Function'
   */
  untitled_Y.Out5 = k;
}

/* Model initialize function */
void untitled_initialize(void)
{
  /* Registration code */

  /* initialize non-finites */
  rt_InitInfAndNaN(sizeof(real_T));
}

/* Model terminate function */
void untitled_terminate(void)
{
  /* (no terminate code required) */
}

        Tips:从生成的C代码来看,底层逻辑的实现方法与前一种是类似的

        上述代码仿真运行也没有问题,结果符合需求,示例如下:

        分析上述算法的特点,不仅实现了项目中的需求,同时也利用NaNFlag为数据处理算法进行了降阶

分析和应用

        利用NaNFlag开发数据处理算法时,需要注意如下几点:

        1、两种算法生成的代码,底层逻辑都一样,但是是开发复杂度软件成熟度上差别好多,前者更适合用于逻辑探索和思维训练,后者跟适合于工程应用

        2、两种算法的开发自由度不同,可裁剪和压缩负载的空间也不同。前者可以根据实际应用裁剪出自己需要的数组大小,选取自己够用的数据类型,能更极致压缩算法对内存资源算力资源的消耗。后者是把一部分算法设计工作交给代码生成工具去做了,开发者就没有这么大的灵活度了。前者更适用于处理器资源有限的专用嵌入式项目,后者更实用于模块化平台化开发的项目。

总结

        以上就是本人在嵌入式软件开发中设计数据处理算法时,一些个人理解和分析的总结,首先介绍了它的背景情况,然后展示它的初始设计和优化设计,最后分析了利用NaNFlag开发数据处理算法的注意事项和应用场景。

        后续还会分享另外几个最近总结的软件优化知识点,欢迎评论区留言、点赞、收藏和关注,这些鼓励和支持都将成文本人持续分享的动力。

        另外,上述例程使用的Demo工程,可以到笔者的主页查找和下载。


        版权声明:原创文章,转载和引用请注明出处和链接,侵权必究

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1809045.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

kubernetes(k8s)集群部署(2)

目录 k8s集群类型 k8s集群规划&#xff1a; 1.基础环境准备&#xff1a; &#xff08;1&#xff09;保证可以连接外网 &#xff08;2&#xff09;关闭禁用防火墙和selinux &#xff08;3&#xff09;同步阿里云服务器时间&#xff08;达到集群之间时间同步&#xff09; &…

上心师傅的思路分享(三)--Nacos渗透

目录 1. 前言 2. Nacos 2.1 Nacos介绍 2.2 鹰图语法 2.3 fofa语法 2.3 漏洞列表 未授权API接口漏洞 3 环境搭建 3.1 方式一: 3.2 方式二: 3.3 访问方式 4. 工具监测 5. 漏洞复现 5.1 弱口令 5.2 未授权接口 5.3.1 用户信息 API 5.3.2 集群信息 API 5.3.3 配置…

前端开发部署:Visual Studio Code + vue

〇 说明 本教程全部采用默认安装路径&#xff0c;因为在进行自定义路径安装的时候&#xff0c;需要配置各种环境变量&#xff0c;在这个配置过程中&#xff0c;可能出现各种很混乱的问题。 一 安装Node.js 1 下载https://nodejs.org/en 2 按照默认NEXT执行 C:\Program Files…

flutter日历范围选择器

1.传入日期跨度&#xff0c;选择上架日期时&#xff0c;自动显示下架日期 2.手动选择上架日期和下架日期(图中下架日期自动填了只需CalendarDateRangePicker在initState方法中使用_startDate widget.initialStartDate; _endDate widget.initialEndDate;&#xff0c;而不直接…

史上最详细四叉树地图不同技术应用和代码详解

四叉树地图在计算机和机器人领域应用的很广&#xff0c;但是初学者可能会发现四叉树地图有各种不同的实现方式&#xff0c;很多在机器人领域不适用或是在计算机存储领域不适用。今天我就讲解下各类四叉树的实现方式和应用场景。 史上最详细四叉树地图不同技术应用和代码详解 本…

出现 Navicat 和 Cmd 下SQL 版本 | 查询不一致的解决方法

目录 1. 问题所示1.1 查询表格不一致1.2 版本不一致2. 原理分析3. 解决方法1. 问题所示 命令行和数据库使用工具出现不一致的情况,分别有如下情况 1.1 查询表格不一致 使用工具查询当地表格: 使用命令行查询当地表格: 1.2 版本不一致 在cmd命令下mysql --version 查询…

Vue3全局封装dialog弹框

Vue3全局封装modal弹框使用&#xff1a; 应用场景&#xff1a;全局动态form表单弹框 应用Vue3碎片&#xff1a; ref&#xff0c;reactive&#xff0c;app.component&#xff0c;defineExpose&#xff0c;defineProps&#xff0c;defineEmits 应用UI: element-plus dialog form …

【设计模式】结构型设计模式之 适配器模式

介绍 适配器模式&#xff08;Adapter Pattern&#xff09; 是一种结构型设计模式&#xff0c;它的核心目的是使接口不兼容的类能够协同工作。适配器模式通过将一个类的接口转换为客户希望的另一个接口&#xff0c;来解决两个已有接口之间不匹配的问题&#xff0c;从而增加它们…

【Vue】声明式导航-自定义类名(了解)

问题 router-link的两个高亮类名 太长了&#xff0c;我们希望能定制怎么办 解决方案 我们可以在创建路由对象时&#xff0c;额外配置两个配置项即可。 linkActiveClass和linkExactActiveClass const router new VueRouter({routes: [...],linkActiveClass: "类名1&quo…

微信小程序毕业设计-网吧在线选座系统项目开发实战(附源码+论文)

大家好&#xff01;我是程序猿老A&#xff0c;感谢您阅读本文&#xff0c;欢迎一键三连哦。 &#x1f49e;当前专栏&#xff1a;微信小程序毕业设计 精彩专栏推荐&#x1f447;&#x1f3fb;&#x1f447;&#x1f3fb;&#x1f447;&#x1f3fb; &#x1f380; Python毕业设计…

Hadoop 2.0:主流开源云架构(一)

目录 一、引例&#xff08;一&#xff09;问题概述&#xff08;二&#xff09;常规解决方案&#xff08;三&#xff09;分布式下的解决方案&#xff08;四&#xff09;小结 自从云计算的概念被提出&#xff0c;不断地有IT厂商推出自己的云计算平台&#xff0c;但它们都是商业性…

LeetCode | 997.找到小镇的法官

这道题拿到后很明显是一个图论的简单出度入度问题&#xff0c;法官的标志就是图中出度为0&#xff0c;入度为n-1的结点&#xff0c;而且根据题目条件&#xff0c;满足这一条件的结点有且只有一个 但是我不知道力扣中关于图论的邻接表和邻接矩阵这些数据结构是需要自己写还是已经…

shell编程(三)—— 控制语句

程序的运行除了顺序运行外&#xff0c;还可以通过控制语句来改变执行顺序。本文介绍bash的控制语句用法。 一、条件语句 Bash 中的条件语句让我们可以决定一个操作是否被执行。结果取决于一个包在[[ ]]里的表达式。 bash中的检测命令由[[]]包起来&#xff0c;用于检测一个条…

论文中eps格式图片制作

在提交论文终稿时&#xff0c;有时需要提交论文中图片的eps格式&#xff0c;这里记录一下eps格式图片制作的过程&#xff0c;方便以后查阅。 论文中eps格式图片制作 PPT绘制的图片转换为eps格式使用代码生成的图片Latex中显示的图片大小跟Ai中设定画板的大小不一致 PPT绘制的图…

品牌策划:不只是工作,是一场创意与学习的旅程

你是否认为只有那些经验丰富、手握无数成功案例的高手才能在品牌策划界崭露头角&#xff1f; 今天&#xff0c;我要悄悄告诉你一个行业内的秘密&#xff1a;在品牌策划的世界里&#xff0c;经验虽重要&#xff0c;但绝非唯一。 1️、无止境的学习欲望 品牌策划&#xff0c;这…

智能投顾:重塑金融理财市场,引领行业新潮流

一、引言 在数字化浪潮的推动下,金融行业正经历着前所未有的变革。其中,智能投顾作为金融科技的重要分支,以其高效、便捷和个性化的服务,逐渐成为金融理财市场的新宠。本文旨在探讨智能投顾如何引领金融理财新潮流,通过丰富的案例及解决方案,展示其独特的魅力和价值。 二…

Clearedge3d EdgeWise 5.8 强大的自动化建模软件

EdgeWise是功能强大的建模软件&#xff0c;提供领先的建模功能和先进的技术&#xff0c;让您的整个过程更快更准确&#xff01;您可以获得使用自动特征提取和对象识别的 3D 建模&#xff0c;ClearEdge3D 自动建模和对象识别软件通过创建竣工文档和施工验证完成该过程。拓普康和…

Go singlefight 源码详解|图解

写在前面 通俗的来说就是 singleflight 将相同的并发请求合并成一个请求&#xff0c;进而减少对下层服务的压力&#xff0c;通常用于解决缓存击穿的问题。 详解 基础结构 golang.org/x/sync/singleflight singleflight结构体&#xff1a; type call struct {wg sync.WaitGro…

永磁同步电机双矢量模型预测转矩控制MPTC

导读&#xff1a;本期文章主要介绍永磁同步电机双矢量模型预测转矩控制。由于传统直接转矩控制和单矢量的模型预测转矩控制转矩纹波较大&#xff0c;且在全速范围内的开关频率不固定&#xff0c;针对这一缺陷&#xff0c;引入双矢量MPTC。 如果需要文章中的仿真模型&#xff0…

AI生成个性化壁纸

使用天工AI 将图片设置成桌面壁纸