C++ 贪心算法——跳跃游戏、划分字母区间

news2024/12/26 23:36:16

在这里插入图片描述

   一:跳跃游戏

   55. 跳跃游戏

   题目描述:给你一个非负整数数组 nums ,你最初位于数组的 第一个下标 。数组中的每个元素代表你在该位置可以跳跃的最大长度。判断你是否能够到达最后一个下标,如果可以,返回 true ;否则,返回 false 。

   示例 1:

输入:nums = [2,3,1,1,4]
输出:true
解释:可以先跳 1 步,从下标 0 到达下标 1,然后从下标 13 步到达最后一个下标。

   示例 2:

输入:nums = [3,2,1,0,4]
输出:false
解释:无论你怎么跳,总会到达下标为 3 的位置。但该下标的最大跳跃长度是 0 ,所以永远不可能到达最后一个下标。

   提示:

* 1 <= nums.length <= 10* 0 <= nums[i] <= 10

   解题思路:

   这道题最关键的地方就是不要去想在当前位置,我应该跳到哪里去,而是只需要记录当前能到达的最远位置,就可以了,遍历一遍给定的数组,若发现遍历到的当前位置i大于最远可达距离,则说明无法到达,直接返回false,若数组遍历完了,没有返回false,说明遍历到每一个i处时,均小于当时的最远距离,即均可达,返回true。

   参考程序:

class Solution {
public:
    bool canJump(vector<int>& nums) {
        int k = 0;
        for (int i = 0; i < nums.size(); i++) {
            if (i > k) return false;
            k = max(k, i + nums[i]);
        }
        return true;
    }
};

在这里插入图片描述

   二:跳跃游戏 II

   45. 跳跃游戏 II

   题目描述:给定一个长度为 n 的 0 索引整数数组 nums ,初始位置为 nums[0] 。每个元素 nums[i] 表示从索引 i 向前跳转的最大长度。换句话说,如果你在 nums[i] 处,你可以跳转到任意 nums[i + j] 处:

0 <= j <= nums[i]
 i + j < n

   返回到达 nums[n - 1] 的最小跳跃次数。生成的测试用例可以到达 nums[n - 1] 。

   示例 1:

输入:nums = [2,3,1,1,4]
输出:2
解释:跳到最后一个位置的最小跳跃次数是 2。
从下标为 0 跳跃下标为 1 的位置,跳 1 步,然后再跳 3 步到达数组的最后一个位置。

   示例 2:

输入:nums = [2,3,0,1,4]
输出:2

   提示:

* 1 <= nums.length <= 10* 0 <= nums[i] <= 1000
* 题目保证可以到达 nums[n-1]

   解题思路:

   这道题最关键的地方同样是不要去想在当前位置,我应该跳到哪里去。而且根据每次跳跃所能到达的最远距离,将给定数组划分为很多区间,遍历当前区间中所有值,得到的最远距离,作为下一个区间的右界限,划分的区间数-1即为所需的最少跳跃次数。这么说可能有点懵,下面举一个例子,大家就明白了

   例如,对于[2,3,1,1,4,2,1,1,3],起始的时候,只能从索引为0的2处起跳,

   则[2,3,1,1,4,2,1,1,3] 划分为 [2] [3,1,1,4,2,1,1,3]

   从索引为0的2处起跳,其最远可以到达的索引为2的1处,按最远可到达的区域,划分数组

   [2] [3,1,1,4,2,1,1,3] 划分为 [2] [3,1] [1,4,2,1,1,3]

   遍历新得到的区间[3,1],记录最远距离,若从3处起跳,最远可到达索引为4的4处,若从1处起跳,则只能到达4前面索引为3的1处,所以当前区间[3,1]起跳,最远可到达索引为4的4处,因此

   [2] [3,1] [1,4,2,1,1,3] 划分为 [2] [3,1] [1,4] [2,1,1,3]

   同理,遍历新得到的区间[1,4],记录最远距离,若从1处起跳,最远可到达索引为4的4处,若从4处起跳,则最远可以到达后面索引为8的3处,所以当前区间[3,1]起跳,最远可到达索引为8的3处,因此

   已经超过或恰好到达最后一个元素,不需要继续划分了,即

   起始位置: [2]

   第一次跳跃,新的可达区域 [3,1]

   第二次跳跃,新的可达区域 [1,4]

   第三次跳跃,新的可达区域 [2,1,1,3]

   上面过程中遍历当前区间,记录从当前区间起跳可到达的最远距离的过程对应下面程序中的

   maxPos = max(nums[i] + i, maxPos);

   上面每个区间的右界限,即对应下面程序中的end变量,当遍历完当前区间后,遍历当前区间时得到的最远可达距离maxPos,即为下一个区间的右界限,即end = maxPos;

   参考程序:

class Solution {
public:
   int jump(vector<int>& nums)
    {
        int ans = 0,end = 0,maxPos = 0;
        for (int i = 0; i < nums.size() - 1; i++)
        {
            maxPos = max(nums[i] + i, maxPos);
            if (i == end){ end = maxPos; ans++;}   
        }
        return ans;
    }

};

在这里插入图片描述

   三、划分字母区间

   763. 划分字母区间

   题目描述:给你一个字符串 s。我们要把这个字符串划分为尽可能多的片段,同一字母最多出现在一个片段中。注意,划分结果需要满足:将所有划分结果按顺序连接,得到的字符串仍然是 s。返回一个表示每个字符片段长度的数组。

   示例1:

  • 输入:s = "ababcbacadefegdehijhklij"
  • 输出:[9,7,8]
  • 解释:
    划分结果为 "ababcbaca", "defegde", "hijhklij"
    每个字母最多出现在一个片段中。
    像 “ababcbacadefegde”, “hijhklij” 这样的划分是错误的,因为划分的片段数较少。

   示例2:

  • 输入:s = "eccbbdbec"
  • 输出:[10]

   注意:

  • 1 <= s.length <= 500
  • s 仅由小写英文字母组成

   解决思路一:

   ①、首先,遍历一遍给定的字符串s,记录每个字母出现的次数,存放在变量int zm[26]中。

   ②、然后,进行第二遍遍历,在每轮迭代中,将当前字符放入map中, map的键选取为字母映射编号(0~25),值选取为当前出现次数。并进行判断,若map中当前字符出现的次数与第一次遍历时存放在数组zm中的次数相等,说明该字符已经全部出现了,将其从map表中删除。若map表为空,则说明,遍历到当前位置处,前面出现的所有字符,后面均不再出现,可以在此处进行切割,将个数累计变量进行存储(也就是我们所要输出的长度),然后将累计量清零,继续进行下一轮迭代,直至第二遍遍历结束。

   上述思路的参考程序如下:

class Solution {
public:
    vector<int> partitionLabels(string s) {

        int zm[26]={0}; unordered_map<int,int> map; vector<int> ans; int iter=0;
        for(int i=0;i<s.size();i++){ zm[s[i]-'a']++;}  //第一遍遍历,统计各个字母出现次数

        for(int i=0;i<s.size();i++) //第二遍遍历,统计切割段数
        { 
             map[s[i]-'a']++; // 键选取为字母映射编号(0~25),值选取为当前出现次数
             auto it = map.begin();
             while (it != map.end()) 
             {
                if (it->second == zm[it->first]) it = map.erase(it);     
                else break;
             }
            iter++;
            if(map.empty()) {ans.push_back(iter); iter=0;}  //当map为空时,说明当前已经出现过的元素,已经全部出现了
        }
        return ans;
    }
};

在这里插入图片描述

   上述方案的时间复杂度较低,属于时间最优的算法之一,但由于使用了额外的map表,空间复杂度比较高,下面介绍一种改进方案,不再需要使用额外的map表,从而降低空间复杂度。


   解决思路二:

   ①、首先,同样是遍历一遍给定的字符串s,所不同的是,记录的是每个字符最后出现的位置,存放在int hash[27]中。

   ②、然后,进行第二遍遍历,最远边界right初始化为0,左边界left初始化为0,在每轮迭代中,对最远边界进行更新,若当前字符i的最远边界大于right,则对right进行更新。在每轮迭代中,会进行判断,若当前字符i处于最远边界right处,则说明,到达了前面出现的所有字符的最远边界处,前面出现的所有字符,后面均不再出现,可以在此处进行切割。right-left+1,即为当前片段的长度,压入结果队列中。并将left更新为i + 1。继续进行下一轮迭代,直至第二遍遍历结束。

   上述思路的参考程序如下:

class Solution {
public:
    vector<int> partitionLabels(string S) {
        int hash[27] = {0}; // i为字符,hash[i]为字符出现的最后位置
        for (int i = 0; i < S.size(); i++) { // 统计每一个字符最后出现的位置
            hash[S[i] - 'a'] = i;
        }
        vector<int> result;
        int left = 0;
        int right = 0;
        for (int i = 0; i < S.size(); i++) {
            right = max(right, hash[S[i] - 'a']); // 找到字符出现的最远边界
            if (i == right) {
                result.push_back(right - left + 1);
                left = i + 1;
            }
        }
        return result;
    }
}

在这里插入图片描述

   上述方案的时间复杂度同样较低,属于时间最优的算法之一,且无需使用额外的map表,空间复杂度也得到了有效降低。


在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1807683.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

【服务实现读写分离】

文章目录 什么是读写分离基于Spring实现实现读写分离项目中常用的数据源切换依赖包 什么是读写分离 服务读写分离&#xff08;Service Read-Write Splitting&#xff09;是一种常见的数据库架构设计模式&#xff0c;旨在提高系统的性能和可扩展性。通过将读操作和写操作分离到…

借助ChatGPT快速仿写一篇优质论文,无痛仿写、完美创作

大家好&#xff0c;感谢关注。我是七哥&#xff0c;一个在高校里不务正业&#xff0c;折腾学术科研AI实操的学术人。可以添加我&#xff08;yida985&#xff09;交流学术写作或ChatGPT等AI领域相关问题&#xff0c;多多交流&#xff0c;相互成就&#xff0c;共同进步 在学术写…

探索智慧景区票务系统的架构与应用

随着旅游业的迅速发展&#xff0c;智慧景区票务系统已经成为提升景区管理效率、优化游客体验的重要工具。智慧景区票务系统的架构设计与应用&#xff0c;将现代信息技术与景区管理相结合&#xff0c;为景区的门票销售、入园管理和游客服务提供了全新的解决方案。本文将深入探讨…

形参和实参的区别

形参&#xff1a;函数定义时声明的参数。 实参&#xff1a;调用函数时传递的参数。

数字孪生智慧水利:精准管理与智能决策的新时代

图扑数字孪生技术在智慧水利中的应用&#xff0c;通过虚拟模型与真实水利系统的无缝连接&#xff0c;实现对水资源和水利工程的全面监控和精细管理。实时数据采集与动态模拟提升了水利系统的预测和响应能力&#xff0c;从洪水预警到水质监测&#xff0c;数字孪生助力各项决策更…

一款开源文件加速下载利器

前言 大文件的下载&#xff0c;浏览器支持不是很好&#xff0c;今天下载了一个20个G的文件&#xff0c;连续失败了好多次。 然后寻找到了一个开源的下载工具gospeed&#xff0c;可以完美的解决这个问题。而且下载速度快。 简介 Gopeed&#xff08;全称 Go Speed&#xff09;&am…

k8s面试题大全,保姆级的攻略哦(三)

目录 1、简述ETCD及其特点? 2、简述ETCD适应的场景? 3、简述什么是Kubernetes? 4、简述Kubernetes和Docker的关系? 5、简述Kubernetes中什么是Minikube、Kubectl、Kubelet? 6、简述Kubernetes常见的部署方式? 7、简述Kubernetes如何实现集群管理? 8、简述Kubern…

2 - 寻找用户推荐人(高频 SQL 50 题基础版)

2.寻找用户推荐人 考点: sql里面的不等于&#xff0c;不包含null -- null 用数字判断筛选不出来 select name from Customer where referee_id !2 OR referee_id IS NULL;

RK3288 android7.1 实现ota升级时清除用户数据

一&#xff0c;OTA简介(整包&#xff0c;差分包) OTA全称为Over-The-Air technology(空中下载技术)&#xff0c;通过移动通信的接口实现对软件进行远程管理。 1. 用途&#xff1a; OTA两种类型最大的区别莫过于他们的”出发点“&#xff08;我们对两种不同升级包的创建&…

这4个科研思维陷阱,可能正在阻碍你发表论文!

我是娜姐 迪娜学姐 &#xff0c;一个SCI医学期刊编辑&#xff0c;探索用AI工具提效论文写作和发表。 昨天&#xff0c;有位同学忧心忡忡的过来问我&#xff1a;一区文章已经接收了&#xff0c;因为两张图里有错误&#xff0c;想要撤稿重投。 我的建议如下&#xff1a; 1 重新投…

【深度学习】PuLID: Pure and Lightning ID Customization via Contrastive Alignment

论文&#xff1a;https://arxiv.org/abs/2404.16022 代码&#xff1a;https://github.com/ToTheBeginning/PuLID 文章目录 AbstractIntroductionRelated WorkMethods Abstract 我们提出了一种新颖的、无需调整的文本生成图像ID定制方法——Pure and Lightning ID customizatio…

三极管十大品牌

三极管十大品牌-三极管品牌-晶体三极管哪个品牌好-Maigoo品牌榜

Java学习 - MyBatis - 入门实例详解

前言 在上一篇文章中&#xff0c;我们讨论了持久化的概念&#xff0c;并简要介绍了 MyBatis。今天我们将深入到 MyBatis 的实际应用中&#xff0c;通过创建一个入门实例来展示如何使用 MyBatis 执行基本的 CRUD&#xff08;创建、读取、更新、删除&#xff09;操作。这个过程将…

软件项目安全保证措施(Word原件)

软件安全保证措施 一、身份鉴别 二、访问控制 三、通信完整性、保密性 四 、数据完整性 六、数据保密性 七、应用安全支撑系统设计获取本原件及更多资料&#xff1a;本文末个人名片。

OpenGauss数据库-3.数据库管理

第1关&#xff1a;创建数据库 gsql -d postgres -U gaussdb -w passwd123123 create database accessdb with ownergaussdb templatetemplate0;第2关&#xff1a;修改数据库 gsql -d postgres -U gaussdb -w passwd123123 alter database accessdb rename to human_tpcds; 第…

Golang | Leetcode Golang题解之第141题环形链表

题目&#xff1a; 题解&#xff1a; func hasCycle(head *ListNode) bool {if head nil || head.Next nil {return false}slow, fast : head, head.Nextfor fast ! slow {if fast nil || fast.Next nil {return false}slow slow.Nextfast fast.Next.Next}return true }

SpringSecurity入门(三)

12、密码加密 12.1、不指定具体加密方式&#xff0c;通过DelegatingPasswordEncoder&#xff0c;根据前缀自动选择 PasswordEncoder passwordEncoder PasswordEncoderFactories.createDelegatingPasswordEncoder();12.2、指定具体加密方式 // Create an encoder with streng…

【数据结构】前缀树(字典树)汇总

基础 {“a”,“abc”,“bac”,“bbc”,“ca” }的字典树如下图&#xff1a; 最主用的应用&#xff1a;一&#xff0c;字符串编码。二&#xff0c;位运算。 字符串编码 相比利用哈希映射编码&#xff0c;优点如下&#xff1a; 依次查询长度为n的字符串s的前缀时间复杂度是O(…

Qt图标字体文件中提取字体保存为图片

本文借用别人写的一个IconHelper来做说明。 1. 加载一个字体文件 QScopedPointer<IconHelper> iconHelper(new IconHelper(":/fa-regular-400.ttf", "Font Awesome 6 Pro Regular"));构造函数 IconHelper::IconHelper(const QString &fontFile…