LangChain基础知识入门

news2024/11/24 4:09:16

LangChain的介绍和入门


在这里插入图片描述

1 什么是LangChain

在这里插入图片描述

LangChain由 Harrison Chase 创建于2022年10月,它是围绕LLMs(大语言模型)建立的一个框架,LLMs使用机器学习算法和海量数据来分析和理解自然语言,GPT3.5、GPT4是LLMs最先进的代表,国内百度的文心一言、阿里的通义千问也属于LLMs。LangChain自身并不开发LLMs,它的核心理念是为各种LLMs实现通用的接口,把LLMs相关的组件“链接”在一起,简化LLMs应用的开发难度,方便开发者快速地开发复杂的LLMs应用。LangChain目前有两个语言的实现:Python和Node.js


我们从两个方面全面介绍LangChain:一个是LangChain组件的基本概念和应用;另一个是LangChain常见的使用场景。


2 LangChain主要组件

在这里插入图片描述

一个LangChain的应用是需要多个组件共同实现的,LangChain主要支持6种组件:

  • Models:模型,各种类型的模型和模型集成,比如GPT-4
  • Prompts:提示,包括提示管理、提示优化和提示序列化
  • Memory:记忆,用来保存和模型交互时的上下文状态
  • Indexes:索引,用来结构化文档,以便和模型交互
  • Chains:链,一系列对各种组件的调用
  • Agents:代理,决定模型采取哪些行动,执行并且观察流程,直到完成为止

2.1 Models

现在市面上的模型多如牛毛,各种各样的模型不断出现,LangChain模型组件提供了与各种模型的集成,并为所有模型提供一个精简的统一接口。

LangChain目前支持三种类型的模型:LLMs、Chat Models(聊天模型)、Embeddings Models(嵌入模型).

  • LLMs: 大语言模型接收文本字符作为输入,返回的也是文本字符.

  • 聊天模型: 基于LLMs, 不同的是它接收聊天消(一种特定格式的数据)作为输入,返回的也是聊天消息.

  • 文本嵌入模型: 文本嵌入模型接收文本作为输入, 返回的是浮点数列表.

LangChain支持的三类模型,它们的使用场景不同,输入和输出不同,开发者需要根据项目需要选择相应。


2.1.1 LLMs (大语言模型)

LLMs使用场景最多,常用大模型的下载库:https://huggingface.co/models:

接下来我们以GPT模型为例, 使用该类模型的组件:

  • 第一步:安装必备的工具包:langchain和openai
pip install openai==0.28
pip install langchain

注意,在使用openai模型之前,必须开通OpenAI API服务,需要获得API Token。

  • 第二步:申请API Token
  • 第三部:代码实现
# 导入OpenAI模型
from langchain.llms import OpenAI
import os
os.environ["OPENAI_API_KEY"] = "你的OpenAI API token"
llm = OpenAI(model_name="text-davinci-003", n=2, temperature=0.3)
llm("给我讲一个笑话")
# 答案:一个猴子去河里洗澡,洗完后他看见自己的影子,他觉得自己太瘦了,于是他又把头放进河里洗了一遍!

# 使用generate方法可以同时接收多个输入,并且返回token使用信息
llm.generate(["给我讲一个故事", "给我讲一个笑话"])
# 答案:# generations=[
#   [Generation(text='\n\n一个叫玛丽的小女孩,有一只叫毛毛的小猫。\n\n每天晚上,玛丽都会和毛毛一起玩耍,一起跳舞,一起唱歌,一起玩游戏。\n\n有一天,玛丽和毛毛一起去海边玩,突然,毛毛被一只海鸥抓走了。玛丽非常伤心,她跑到海边哭了起来,哭着喊着毛毛的', 
#       generation_info={'finish_reason': 'length', 'logprobs': None}),
#     Generation(text='\n\n一个叫小明的男孩,他很喜欢探险。有一天,他和他的朋友们一起去森林里玩,突然,他发现一个洞穴,他非常好奇,于是他决定去看看洞穴里面到底有什么。\n\n他走进洞穴,里面黑暗而又潮湿,他继续前行,突然,他看到一只大老虎,它正在吃一只小兔子。', 
#       generation_info={'finish_reason': 'length', 'logprobs': None})], 
#   [Generation(text='\n\n两个熊在森林里走,一个熊说:“嘿,你知道为什么树林里没有路吗?”另一个熊回答:“不知道,为什么?”第一个熊说:“因为它们都在绕树林跑!”', generation_info={'finish_reason': 'stop', 'logprobs': None}), Generation(text='\n\n两个熊在森林里拔萝卜,一个熊拔出一个萝卜,另一个熊说:“你拔的太慢了,我拔的快一点!”', 
#       generation_info={'finish_reason': 'stop', 'logprobs': None})]
2.1.2 Chat Models (聊天模型)

聊天消息包含下面几种类型,使用时需要按照约定传入合适的值:

  • AIMessage: 用来保存LLM的响应,以便在下次请求时把这些信息传回给LLM.
  • HumanMessage: 发送给LLMs的提示信息,比如“实现一个快速排序方法”.
  • SystemMessage: 设置LLM模型的行为方式和目标。你可以在这里给出具体的指示,比如“作为一个代码专家”,或者“返回json格式”.
  • ChatMessage: ChatMessage可以接收任意形式的值,但是在大多数时间,我们应该使用上面的三种类型.

LangChain支持的常见聊天模型有:

模型描述
ChatOpenAIOpenAI聊天模型
AzureChatOpenAIAzure提供的OpenAI聊天模型
PromptLayerChatOpenAI基于OpenAI的提示模版平台

举例说明:

from langchain.chat_models import ChatOpenAI
from langchain.schema import (
    AIMessage,
    HumanMessage,
    SystemMessage
)
import os
os.environ["OPENAI_API_KEY"] = "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"

chat = ChatOpenAI(temperature=0)

messages = [
        SystemMessage(content="返回json object,不要纯文本,按照每项参数拆分,不要说明和解释信息"),
        HumanMessage(content="告诉我model Y汽车的尺寸参数")
]

print(chat(messages))
# 答案:# content='{\n "车长": "4,750 mm",\n "车宽": "1,921 mm",\n "车高": "1,624 mm",\n "轴距": "2,890 mm",\n "最小离地间隙": "162 mm",\n "行李箱容积": "1,900 L"\n}' additional_kwargs={} example=False
2.1.3 提示模板

在上面的例子中,模型默认是返回纯文本结果的,如果需要返回json格式,需要不断优化SystemMessage。那么有什么简单的方式快速让模型返回想要的数据呢?就是提示模版。

提示模板就是把一些常见的提示整理成模板,用户只需要修改模板中特定的词语,就能快速准确地告诉模型自己的需求。我们看个例子:

第一步:导入依赖

from langchain.chat_models import ChatOpenAI
from langchain.prompts import (
    ChatPromptTemplate,
    PromptTemplate,
    SystemMessagePromptTemplate,
    AIMessagePromptTemplate,
    HumanMessagePromptTemplate,
)
from langchain.schema import (
    AIMessage,
    HumanMessage,
    SystemMessage
)

第二步:实现提示模板:

system_template="你是一个把{input_language}翻译成{output_language}的助手"
system_message_prompt = SystemMessagePromptTemplate.from_template(system_template)
human_template="{text}"
human_message_prompt = HumanMessagePromptTemplate.from_template(human_template)

chat_prompt = ChatPromptTemplate.from_messages([system_message_prompt, human_message_prompt])
messages = chat_prompt.format_prompt(input_language="英语", output_language="汉语", text="I love programming.")

print(messages)
#messages=[SystemMessage(content='你是一个把英语翻译成汉语的助手', additional_kwargs={}), HumanMessage(content='I love programming.', additional_kwargs={}, example=False)]
chat = ChatOpenAI(temperature=0)

print(chat(messages.to_messages()))

# content='我喜欢编程。' additional_kwargs={} example=False
2.1.4 Embeddings Models(嵌入模型)

在这里插入图片描述

Embeddings Models特点:将字符串作为输入,返回一个浮动数的列表。在NLP中,Embedding的作用就是将数据进行文本向量化。

Embeddings Models可以为文本创建向量映射,这样就能在向量空间里去考虑文本,执行诸如语义搜索之类的操作,比如说寻找相似的文本片段。

接下来我们以一个OpenAI文本嵌入模型的例子进行说明:

from langchain.embeddings import OpenAIEmbeddings
open_embed = OpenAIEmbeddings()
text = "这是一个测试文档。"

query_result = open_embed.embed_query(text)
doc_result = open_embed.embed_documents([text])

print(query_result)
# [-0.009422866627573967, 0.004315766040235758, 0.002380653750151396,  ...]

上述代码中,我们分别使用了两种方法来进行文本的向量表示,他们最大不同在于:embed_query()接收一个字符串的输入,而embed_documents可以接收一组字符串。

LangChain集成的文本嵌入模型有:

  • AzureOpenAI、Cohere、Hugging Face Hub、OpenAI、Llama-cpp、SentenceTransformers

2.2 Prompts

Prompt是指当用户输入信息给模型时加入的提示,这个提示的形式可以是zero-shot或者few-shot等方式,目的是让模型理解更为复杂的业务场景以便更好的解决问题。

提示模板:如果你有了一个起作用的提示,你可能想把它作为一个模板用于解决其他问题,LangChain就提供了PromptTemplates组件,它可以帮助你更方便的构建提示。

zero-shot提示方式:

from langchain import PromptTemplate
from langchain.llms import OpenAI

template = "我的邻居姓{lastname},他生了个儿子,给他儿子起个名字"

prompt = PromptTemplate(
    input_variables=["lastname"],
    template=template,
)

prompt_text = prompt.format(lastname="王")
# result: 我的邻居姓王,他生了个儿子,给他儿子起个名字

# 调用OpenAI
llm = OpenAI(temperature=0.9)
print(llm(prompt_text))

# 叫王爱慕。

few-shot提示方式:

from langchain import PromptTemplate, FewShotPromptTemplate
from langchain.llms import OpenAI

examples = [
    {"word": "开心", "antonym": "难过"},
    {"word": "高", "antonym": "矮"},
]

example_template = """
单词: {word}
反义词: {antonym}\\n
"""

example_prompt = PromptTemplate(
    input_variables=["word", "antonym"],
    template=example_template,
)

few_shot_prompt = FewShotPromptTemplate(
    examples=examples,
    example_prompt=example_prompt,
    prefix="给出每个单词的反义词",
    suffix="单词: {input}\\n反义词:",
    input_variables=["input"],
    example_separator="\\n",
)

prompt_text = few_shot_prompt.format(input="粗")
print(prompt_text)

# 给出每个单词的反义词
# 单词: 开心
# 反义词: 难过

# 单词: 高
# 反义词: 矮

# 单词: 粗
# 反义词:

# 调用OpenAI
llm = OpenAI(temperature=0.9)
print(llm(prompt_text))

# 细

2.3 Chains(链)

在LangChain中,Chains描述了将LLM与其他组件结合起来完成一个应用程序的过程.

针对上一小节的提示模版例子,zero-shot里面,我们可以用链来连接提示模版组件和模型,进而可以实现代码的更改:

from langchain import PromptTemplate
from langchain.llms import OpenAI
from langchain.chains import LLMChain
# 定义模板
template = "我的邻居姓{lastname},他生了个儿子,给他儿子起个名字"

prompt = PromptTemplate(
    input_variables=["lastname"],
    template=template,
)
llm = OpenAI(temperature=0.9)

chain = LLMChain(llm = llm, 
                  prompt = prompt)
# 执行链
print(chain.run("王"))
# 可以叫王子,也可以叫小王或者小王子等。。

如果你想将第一个模型输出的结果,直接作为第二个模型的输入,还可以使用LangChain的SimpleSequentialChain, 代码如下:

from langchain import PromptTemplate
from langchain.llms import OpenAI
from langchain.chains import LLMChain, SimpleSequentialChain
# 创建第一条链
template = "我的邻居姓{lastname},他生了个儿子,给他儿子起个名字"

first_prompt = PromptTemplate(
    input_variables=["lastname"],
    template=template,
)
llm = OpenAI(temperature=0.9)

first_chain = LLMChain(llm = llm, prompt = first_prompt)

# 创建第二条链
second_prompt = PromptTemplate(
    input_variables=["child_name"],
    template="邻居的儿子名字叫{child_name},给他起一个小名",
)

second_chain = LLMChain(llm=llm, prompt=second_prompt)


# 链接两条链 
overall_chain = SimpleSequentialChain(chains=[first_chain, second_chain], verbose=True)

# 执行链,只需要传入第一个参数
catchphrase = overall_chain.run("王")

2.4 Agents (代理)

在 LangChain 中 Agents 的作用就是根据用户的需求,来访问一些第三方工具(比如:搜索引擎或者数据库),进而来解决相关需求问题。

为什么要借助第三方库?

  • 因为大模型虽然非常强大,但是也具备一定的局限性,比如不能回答实时信息、处理数学逻辑问题仍然非常的初级等等。因此,可以借助第三方工具来辅助大模型的应用。

几个重要的概念:

  • 代理:

    • 负责控制整段代码的逻辑和执行,代理暴露了一个接口,用来接收用户输入,并返回AgentAction或AgentFinish。
    • AgentAction决定使用哪个工具
    • AgentFinish意味着代理的工作完成了,返回给用户结果。
  • 工具:

    • 第三方服务的集成,比如谷歌、bing等等
  • 工具包:

    • 一些集成好了代理包,比如create_csv_agent 可以使用模型解读csv文件。

    • 模型解决csv文件示例:

    from langchain.agents import create_csv_agent
    from langchain.llms import OpenAI
    agent = create_csv_agent(OpenAI(temperature=0), 'data.csv', verbose=True)
    agent.run("一共有多少行数据?")
    
  • 代理执行器:

    • 负责迭代运行代理的循环,直到满足停止的标准。

现在我们实现一个使用代理的例子:假如我们在北京,想让大语言模型告诉我们明天穿什么衣服,由于大语言模型不知道明天的天气,我们借助于serpapi 来查询天气,并传递给模型,代码如下:

from langchain.agents import load_tools
from langchain.agents import initialize_agent
from langchain.agents import AgentType
from langchain.llms import OpenAI

llm = OpenAI(temperature=0)
tools = load_tools(["serpapi"], llm=llm)
agent = initialize_agent(tools, llm, agent=AgentType.ZERO_SHOT_REACT_DESCRIPTION, verbose=True)

agent.run("明天在北京穿什么衣服合适?")

要注意的是,运行这个示例需要申请serpapi token,并且设置到环境变量SERPAPI_API_KEY ,然后安装依赖包google-search-results

LangChain支持的工具如下:

工具描述
Bing SearchBing搜索
Google SearchGoogle搜索
Google Serper API一个从google搜索提取数据的API
Python REPL执行python代码
Requests执行python代码

2.5 Memory

大模型本身不具备上下文的概念,它并不保存上次交互的内容,ChatGPT之所以能够和人正常沟通对话,因为它进行了一层封装,将历史记录回传给了模型。

因此 LangChain 也提供了Memory组件, Memory分为两种类型:短期记忆和长期记忆。短期记忆一般指单一会话时传递数据,长期记忆则是处理多个会话时获取和更新信息。

目前的Memory组件只需要考虑ChatMessageHistory。举例分析:

from langchain.memory import ChatMessageHistory

history = ChatMessageHistory()
history.add_user_message("在吗?")
history.add_ai_message("有什么事?")

print(history.messages)

# [HumanMessage(content='在吗?', additional_kwargs={}), AIMessage(content='有什么事?', additional_kwargs={})]

和OpenAI结合,直接使用ConversationChain

from langchain import ConversationChain
from langchain.llms import OpenAI

llm = OpenAI(temperature=0)
conversation = ConversationChain(llm=llm, verbose=True)
conversation.predict(input="小明有1只猫")
conversation.predict(input="小刚有2只狗")
conversation.predict(input="小明和小刚一共有几只宠物?")

如果要像chatGPT一样,长期保存历史消息,,可以使用messages_to_dict 方法

from langchain.memory import ChatMessageHistory
from langchain.schema import messages_from_dict, messages_to_dict

history = ChatMessageHistory()
history.add_user_message("hi!")
history.add_ai_message("whats up?")

dicts = messages_to_dict(history.messages)

print(dicts)
# [{'type': 'human', 'data': {'content': 'hi!', 'additional_kwargs': {}}},
# {'type': 'ai', 'data': {'content': 'whats up?', 'additional_kwargs': {}}}]
# 读取历史消息
new_messages = messages_from_dict(dicts)

print(new_messages)
#[HumanMessage(content='hi!', additional_kwargs={}),
# AIMessage(content='whats up?', additional_kwargs={})]

2.6 Indexes (索引)

在这里插入图片描述

Indexes组件的目的是让LangChain具备处理文档处理的能力,包括:文档加载、检索等。注意,这里的文档不局限于txt、pdf等文本类内容,还涵盖email、区块链、视频等内容。

Indexes组件主要包含类型:

  • 文档加载器
  • 文本分割器
  • VectorStores
  • 检索器

2.6.1 文档加载器

文档加载器主要基于Unstructured 包,Unstructured 是一个python包,可以把各种类型的文件转换成文本。

文档加载器使用起来很简单,只需要引入相应的loader工具:

from langchain.document_loaders import TextLoader
loader = TextLoader('../state_of_the_union.txt', encoding='utf8')
documents = loader.load()

LangChain支持的文档加载器 (部分):

文档加载器描述
CSVCSV问价
JSON Files加载JSON文件
Jupyter Notebook加载notebook文件
Markdown加载markdown文件
Microsoft PowerPoint加载ppt文件
PDF加载pdf文件
Images加载图片
File Directory加载目录下所有文件
HTML网页
2.6.2 文档分割器

由于模型对输入的字符长度有限制,我们在碰到很长的文本时,需要把文本分割成多个小的文本片段。

文本分割最简单的方式是按照字符长度进行分割,但是这会带来很多问题,比如说如果文本是一段代码,一个函数被分割到两段之后就成了没有意义的字符,所以整体的原则是把语义相关的文本片段放在一起。

LangChain中最基本的文本分割器是CharacterTextSplitter ,它按照指定的分隔符(默认“\n\n”)进行分割,并且考虑文本片段的最大长度。我们看个例子:

from langchain.text_splitter import CharacterTextSplitter

# 初始字符串
state_of_the_union = "..."

text_splitter = CharacterTextSplitter(        
    separator = "\\n\\n",
    chunk_size = 1000,
    chunk_overlap  = 200,
    length_function = len,
)

texts = text_splitter.create_documents([state_of_the_union])

除了CharacterTextSplitter分割器,LangChain还支持其他文档分割器 (部分):

文档加载器描述
LatexTextSplitter沿着Latex标题、标题、枚举等分割文本。
MarkdownTextSplitter沿着Markdown的标题、代码块或水平规则来分割文本。
TokenTextSplitter根据openAI的token数进行分割
PythonCodeTextSplitter沿着Python类和方法的定义分割文本。
2.6.3 VectorStores

VectorStores是一种特殊类型的数据库,它的作用是存储由嵌入创建的向量,提供相似查询等功能。我们使用其中一个Chroma 组件作为例子:

from langchain.embeddings.openai import OpenAIEmbeddings
from langchain.text_splitter import CharacterTextSplitter
from langchain.vectorstores import Chroma

# pku.txt内容:<https://www.pku.edu.cn/about.html>
with open('./pku.txt') as f:
    state_of_the_union = f.read()
text_splitter = CharacterTextSplitter(chunk_size=100, chunk_overlap=0)
texts = text_splitter.split_text(state_of_the_union)

embeddings = OpenAIEmbeddings()

docsearch = Chroma.from_texts(texts, embeddings)

query = "1937年北京大学发生了什么?"
docs = docsearch.similarity_search(query)
print(docs)

LangChain支持的VectorStore如下:

VectorStore描述
Chroma一个开源嵌入式数据库
ElasticSearchElasticSearch
Milvus用于存储、索引和管理由深度神经网络和其他机器学习(ML)模型产生的大量嵌入向量的数据库
Redis基于redis的检索器
FAISSFacebook AI相似性搜索服务
Pinecone一个具有广泛功能的向量数据库
2.6.4 检索器

检索器是一种便于模型查询的存储数据的方式,LangChain约定检索器组件至少有一个方法get_relevant_texts,这个方法接收查询字符串,返回一组文档。

from langchain.document_loaders import TextLoader
from langchain.text_splitter import CharacterTextSplitter
from langchain.vectorstores import FAISS
from langchain.embeddings import OpenAIEmbeddings

loader = TextLoader('../../../state_of_the_union.txt')
documents = loader.load()
text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=0)
texts = text_splitter.split_documents(documents)
embeddings = OpenAIEmbeddings()

db = FAISS.from_documents(texts, embeddings)
retriever = db.as_retriever()
docs = retriever.get_relevant_documents("what did he say about ketanji brown jackson")

LangChain支持的检索器组件如下:

检索器介绍
Azure Cognitive Search RetrieverAmazon ACS检索服务
ChatGPT Plugin RetrieverChatGPT检索插件
DataberryDataberry检索
ElasticSearch BM25ElasticSearch检索器
MetalMetal检索器
Pinecone Hybrid SearchPinecone检索服务
SVM RetrieverSVM检索器
TF-IDF RetrieverTF-IDF检索器
VectorStore RetrieverVectorStore检索器
Vespa retriever一个支持结构化文本和向量搜索的平台
Weaviate Hybrid Search一个开源的向量搜索引擎
Wikipedia支持wikipedia内容检索

3 LangChain使用场景

在这里插入图片描述

  • 个人助手
  • 基于文档的问答系统
  • 聊天机器人
  • Tabular数据查询
  • API交互
  • 信息提取
  • 文档总结

小结

主要对LangChain框架基础知识介绍,我们对LangChain有一个初步认识,了解LangChain的使用场景。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1807283.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

架构设计-用户信息及用户相关的密码信息设计

将用户的基本信息和用户密码存放在不同的数据库表中是一种常见的安全做法&#xff0c;这种做法旨在增强数据的安全性和管理的灵活性。以下是这种做法的几个关键原因&#xff1a; 安全性增强&#xff1a; 当用户密码被单独存放在一个表中时&#xff0c;可以使用更强大的加密和哈…

kafka集成SpringBoot api编写教程

1.新建项目 用的idea是20222.1.3版本&#xff0c;没有Spring Initializr 插件&#xff0c;不能直接创建springboot项目 可以在以下网址创建项目&#xff0c;下载后解压&#xff0c;然后用idea打开项目即可 1.1 在 https://start.spring.io/ 上创建项目 1.2上传到linux&#x…

C语言 | Leetcode C语言题解之第140题单词拆分II

题目&#xff1a; 题解&#xff1a; struct Trie {int ch[26];bool flag; } trie[10001];int size;void insert(char* s, int sSize) {int add 0;for (int i 0; i < sSize; i) {int x s[i] - a;if (trie[add].ch[x] 0) {trie[add].ch[x] size;memset(trie[size].ch, 0…

读AI未来进行式笔记07量子计算

1. AI审讯技术 1.1. 发明者最初的目的是发明一种能够替代精神药物&#xff0c;为人类带来终极快乐的技术 1.1.1. 遗憾的是&#xff0c;他找到的只是通往反方向的大门 1.2. 通过非侵入式的神经电磁干扰大脑边缘系统&#xff0c;诱发受审者最…

配置 JDK 和 Android SDK

目录 一、配置JDK 1. 安装 JDK 2. JDK 环境配置 3. JDK的配置验证 二、配置 adb 和Android SDK环境 1、下载 2、配置 Android SDK 环境 一、配置JDK 1. 安装 JDK 安装链接&#xff1a;Java Downloads | Oracle 我安装的是 .zip &#xff0c;直接在指定的文件夹下解压就…

[沉迷理论]进制链表树

往期文章推荐&#xff1a; 题解之最大子矩阵-CSDN博客 洛谷P1115最大子段和[神奇的题目]-CSDN博客 &#xff08;一条神奇的分割线&#xff09; 前言 好久没有更新的我总算在百忙之中抽出时间写了篇博客。 最近总算结束了动态规划的学习&#xff0c;真的是头昏脑涨啊。 最…

论文阅读——MIRNet

项目地址&#xff1a; GitHub - swz30/MIRNet: [ECCV 2020] Learning Enriched Features for Real Image Restoration and Enhancement. SOTA results for image denoising, super-resolution, and image enhancement.GitHub - soumik12345/MIRNet: Tensorflow implementation…

【云岚到家】-day02-1-区域服务后续开发及完善

【云岚到家】-day02-1-区域服务后续开发及完善 1 区域服务后续开发1.1 添加区域服务1.1.1 接口定义1.1.1.1 接口设计1.1.1.2 接口定义-json 1.1.2 接口开发1.1.2.1 mapper1.1.2.2 service1.1.2.3 controller 1.1.3 测试 1.2 修改价格1.2.1 接口定义1.2.1.1 接口设计1.2.1.2 接口…

【RAG入门教程01】Langchian框架 v0.2介绍

LangChain 是一个开源框架&#xff0c;旨在简化使用大型语言模型 (LLM) 创建应用程序的过程。可以将其想象成一套使用高级语言工具进行搭建的乐高积木。 它对于想要构建复杂的基于语言的应用程序而又不必管理直接与语言模型交互的复杂性的开发人员特别有用。它简化了将这些模型…

动态规划(多重背包+完全背包)

P2851 [USACO06DEC] 最少的硬币 G 题解&#xff1a;从题目上看到那个有n种不同的货币&#xff0c;对于买家来说每个货币有C[ i ]个&#xff0c;是有限个数的&#xff0c;但是对于卖家来说 每个货币都是无限的&#xff0c;题目中要我们求的是买到这个物品的最小交易的货币数&…

电子设计入门教程硬件篇之集成电路IC(二)

前言&#xff1a;本文为手把手教学的电子设计入门教程硬件类的博客&#xff0c;该博客侧重针对电子设计中的硬件电路进行介绍。本篇博客将根据电子设计实战中的情况去详细讲解集成电路IC&#xff0c;这些集成电路IC包括&#xff1a;逻辑门芯片、运算放大器与电子零件。电子设计…

燃料电池汽车践行者

前言 见《氢燃料电池技术综述》 见《燃料电池工作原理详解》 见《燃料电池发电系统详解》 见《燃料电池电动汽车详解》 见《氢燃料电池汽车行业发展》 现代汽车&#xff08;中国&#xff09; 现代汽车集团&#xff0c;自1998年成立氢燃料电池研发小组以来深耕氢燃料电池技术&am…

计算机操作系统基础知识:操作系统体系结构图,操作系统的内核,大内核与微内核的区别和优缺点,时钟管理,原语

1.操作系统体系结构图&#xff1a; 2.操作系统的内核&#xff1a; 时钟管理&#xff1a;利用时钟中断实现计时功能。 原语&#xff1a;原语是一种特殊的程序&#xff0c;具有原子性。也就是说&#xff0c;这段程序运行必须一气呵成&#xff0c;不能被中断。 ubuntu、centos的…

VUE3 学习笔记(13):VUE3 下的Element-Plus基本使用

UI是页面的门面&#xff0c;一个好的UI自然令人赏心悦目&#xff1b;国人团队开发的ElementUI在众多UI中较为常见&#xff0c;因此通过介绍它的使用让大家更好的了解第三方UI的使用。 安装 Npm install element-plus --save 或 Cnpm install element-plus --save 配置 全局配置…

Vitis HLS 学习笔记--循环边界包含变量

目录 1. 简介 2. 分析与详解 2.1 未优化 2.2 LOOP_TRIPCOUNT 优化指令 2.3 重写变量循环边界 3. 总结 1. 简介 在硬件设计中&#xff0c;循环的迭代次数通常需要是固定的&#xff0c;因为这有助于资源的预分配和时序分析。 循环边界包含变量意味着循环的迭代次数不是固…

MySQL之多表查询—表子查询

一、引言 上一篇博客学习了行子查询。&#xff08;看弹幕&#xff1a;同一张表用or,不同张表用union&#xff09; 下面接着学习子查询当中的最后一种——表子查询。 表子查询 1、概念 子查询返回的结果是多行多列&#xff0c;这种子查询称为表子查询。 2、常用的操作符 IN 3、…

2024海南省大数据教师培训-Hadoop集群部署

前言 本文将详细介绍Hadoop分布式计算框架的来源&#xff0c;架构和应用场景&#xff0c;并附上最详细的集群搭建教程&#xff0c;能更好的帮助各位老师和同学们迅速了解和部署Hadoop框架来进行生产力和学习方面的应用。 一、Hadoop介绍 Hadoop是一个开源的分布式计算框架&…

使用Nextjs学习(学习+项目完整版本)

创建项目 运行如下命令 npx create-next-app next-create创建项目中出现的各种提示直接走默认的就行,一直回车就行了 创建完成后进入到项目运行localhost:3000访问页面,如果和我下面页面一样就是创建项目成功了 整理项目 将app/globals.css里面的样式都删除,只留下最上面三…

盲盒抽卡机小程序的特点,互联网下市场发展前景

近几年&#xff0c;盲盒抽卡成为了年轻人的新宠&#xff0c;也受到了未成年人的喜爱&#xff0c;卡牌的内容更是丰富多样&#xff0c;涵盖了动漫、漫画、影视等&#xff0c;因此吸引了各类消费者和越来越多的创业者。 目前&#xff0c;随着市场的发展&#xff0c;抽卡机小程序…

2024HW面试 中高级面试面经背诵笔记(持续更新)

常见数据库的端口&#xff0c;Vnc的端口等 参考答案地址&#xff1a;常见数据库默认端口号_数据库端口-CSDN博客 MySQL 3306 Oracle 1521 DB2 5000 PostgreSQL 5432 MongoDB 27017 Redis 6379 SQL Server 1433 vnc的端口是&#xff1a;5900 推荐一个很好的护网笔记&#xff…