手写kNN算法的实现-用欧几里德空间来度量距离

news2025/1/23 5:57:20

kNN的算法思路:找K个离预测点最近的点,然后让它们进行投票决定预测点的类型。

  1. step 1: kNN存储样本点的特征数据和标签数据
  2. step 2: 计算预测点到所有样本点的距离,关于这个距离,我们用欧几里德距离来度量(其实还有很多其他的,比如曼哈顿距离等),并进行排序,拿出前k个样本点。
  3. step 3: 统计前k个样本点的类别,以最多的那个类型作为预测结果。

欧几里德距离:
请添加图片描述

上代码:

import numpy as np
# 用于统计
from collections import Counter

class MyKnn:
	# 初始化投票的数量,neighbors表示我们要找的点的数量,用于投票决定预测点的类型
    def __init__(self,neighbors):
        self.k = neighbors
    
    # 因为kNN是一个惰性机器性学习模型,只在预测阶段才会用到的训练数据,不存在训练阶段。或者说在所谓的训练阶段,只是为了存储样本数据。
    # X为特征集
    # Y为对应的标签集
    def fit(self,X,Y):
        self.X = np.array(X)
        self.Y = np.array(Y)
        # 如果特征集不是矩阵阵列或则标签集不是一维数组,都直接抛异常。
        if self.X.ndim != 2 or self.Y.ndim != 1:
            raise Exception("dimensions are wrong!")
        # 如果标签的数量不竺于特征集的行数也直接抛异常
        if self.X.shape[0] != self.Y.shape[0]:
            raise Exception("input labels are not correct!")
    
    def predict(self,X_pre):
        # 这是要预测的点
        pre = np.array(X_pre)
        # 判断测试点的矩阵是不是和样本点的矩阵一样的,不是直接抛异常
        if self.X.ndim != pre.ndim:
            raise Exception("input dimensions are wrong!")
        # 我们用rs数组来存储预测结果
        rs = []
        for p in pre:
        	# 用temp临时数组来存储预测点到所有样本点的欧几里德距离
            temp = []
            for a in self.X:
                # 取出每一个样本点来与预测点计算欧几里德距离
                # np.sqrt(((p - a) ** 2).sum(-1)) 算出距离,先求出每预测点到样本点的差值,再平方,再将所有平方后的值加在一起,最后对加起来的结果进行开方,得到欧几里德距离。并临时存储在temp数组里
                temp.append(np.sqrt(((p - a) ** 2).sum(-1)))
          
            temp = np.array(temp)
            # 对所有距离进行排序,用np.argsort排序时,结果对识破距离的下标,而不是具体的值,因为我们并不关心具体的值,我们只要前k个点。用np.argsort排序完,取出前k个点的indices(就是下标)
            neighbors_indices = np.argsort(temp)[:self.k]
            #  通过前k个点的下标,取出相应的标签,然后用Counter进行统计(这个就是计票环节)
            ss = np.take(self.Y,neighbors_indices)
            # 我们开始计票,取出票数第一的标签值。
            # e.g: Counter(ss) -> {2: 4, 1: 1} 表示标签值为2的得4示,标签为1的得1票
            # most_common(1) -> [(2, 4)] , 所以most_common(1)[0][0]的值就是 2
            found = Counter(ss).most_common(1)[0][0]
            # 预测结果存储到rs数组中
            rs.append(found)
        return rs

欧几里德距离的计算:
请添加图片描述

测试上面的kNN算法:

# 用鸢尾花数据集来验证我们上面写的算法
from sklearn.datasets import load_iris
# 使用train_test_split对数据集进行拆分,一部分用于训练,一部分用于测试验证
from sklearn.model_selection import train_test_split
# 1.生成一个kNN模型
myknn = MyKnn(5)
# 2.准备数据集:特征集X_train和标签集y_train
X_train,y_train = load_iris(return_X_y=True)
# 留出30%的数据集用于验证测试
X_train,X_test,y_train,y_test = train_test_split(X_train,y_train,test_size=0.3)
# 3.训练模型
myknn.fit(X_train,y_train)
# 4.预测,acc就是预测结果
acc = myknn.predict(X_test)
# 计算准确率
(acc == y_test).mean()

acc == y_test 得到的结果是

array([ True,  True,  True,  True,  True,  True,  True,  True,  True,
        True,  True,  True,  True,  True,  True,  True,  True,  True,
        True,  True,  True,  True,  True,  True,  True,  True,  True,
        True,  True,  True,  True,  True,  True,  True,  True,  True,
       False,  True,  True,  True,  True,  True,  True,  True,  True])

True 是1,False是0,准确率就是:

正确的个数 / 总数 = 准确率

用余弦相似度实现kNN算法

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1806637.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

搭建自己的组件库<2>dialog 组件

目录 设置title 插槽显示 控制宽高 关闭对话框 transition实现动画 引入深度选择器 同样创建组件dialogue.vue后全局注册 dialogue模版&#xff1a; <template><!-- 对话框的遮罩 --><div class"miao-dialog_wrapper"><!-- 真的对话框 …

一分钟有60秒,这个有趣的原因你知道吗?

每周跟踪AI热点新闻动向和震撼发展 想要探索生成式人工智能的前沿进展吗&#xff1f;订阅我们的简报&#xff0c;深入解析最新的技术突破、实际应用案例和未来的趋势。与全球数同行一同&#xff0c;从行业内部的深度分析和实用指南中受益。不要错过这个机会&#xff0c;成为AI领…

【机器学习】【遗传算法】【项目实战】药品分拣的优化策略【附Python源码】

仅供学习、参考使用 一、遗传算法简介 遗传算法&#xff08;Genetic Algorithm, GA&#xff09;是机器学习领域中常见的一类算法&#xff0c;其基本思想可以用下述流程图简要表示&#xff1a; &#xff08;图参考论文&#xff1a;Optimization of Worker Scheduling at Logi…

Linux下软件安装

提示&#xff1a;制作不易&#xff0c;可以点个关注和收藏哦。 前言 介绍 Ubuntu 下软件安装的几种方式&#xff0c;及 apt&#xff0c;dpkg 工具的使用。 提示&#xff1a;以下是本篇文章正文内容&#xff0c;下面案例可供参考. 一、先体验一下 比如我们想安装一个软件&…

DDMA信号处理以及数据处理的流程---随机目标生成

Hello&#xff0c;大家好&#xff0c;我是Xiaojie&#xff0c;好久不见&#xff0c;欢迎大家能够和Xiaojie一起学习毫米波雷达知识&#xff0c;Xiaojie准备连载一个系列的文章—DDMA信号处理以及数据处理的流程&#xff0c;本系列文章将从目标生成、信号仿真、测距、测速、cfar…

Unity Standard shader 修改(增加本地坐标裁剪)

本想随便找一个裁剪的shader&#xff0c;可无奈的是没找到一个shader符合要求&#xff0c;美术制作的场景都是用的都标准的着色器他们不在乎你的功能逻辑需求&#xff0c;他们只关心场景的表现&#xff0c;那又找不到和unity标准着色器表现一样的shader 1.通过贴图的透明通道做…

设计软件有哪些?效果工具篇(3),渲染100邀请码1a12

这次我们再介绍一批渲染效果和后期处理的工具。 1、ColorCorrect ColorCorrect是一种图像处理技术&#xff0c;用于调整图像的色彩和对比度&#xff0c;使其更加自然和平衡。通过ColorCorrect&#xff0c;用户可以调整图像的色调、亮度、饱和度等参数&#xff0c;以达到理想的效…

网络资源模板--基于Android Studio 实现的音乐播放器

一、项目源码获取(非开源) 关注公众号&#xff1a;《编程乐学》 后台回复&#xff1a;24060801 二、项目测试视频 网络资源模板--基于Android Studio 音乐播放器 三、项目简介 四、项目测试环境 五、项目详情设计图 1.登录注册页面介绍 <?xml version"1.0" enco…

【ai】pycharm远程ssh开发

方式1: gateway的方式是远程放一个pycharm 专业版,经常下载失败 方式2: 类似vs,源码本地,同步到远程进行运行。 参考大神的分享: Pycharm远程连接服务器(2023-11-9) Pycharm远程连接服务器(windows下远程修改服务器代码)[通俗易懂] cpolar 建议同时内网穿透 选 远程开…

你还在纠结U盘怎么选吗?小白带你来看

前言 2024年的618活动已经开始了&#xff0c;这个活动买电子产品着实是比其他时间要便宜很多。 前几天小白的一个好朋友问我&#xff1a;U盘该怎么选&#xff1f; 呃&#xff0c;本来是想写“老朋友”的&#xff0c;结果她愣是要我改成“好朋友”。 行吧&#xff0c;那就好朋…

牛客NC18 顺时针旋转矩阵【中等 数学 Java/Go/PHP/C++】

题目 题目链接&#xff1a; https://www.nowcoder.com/practice/2e95333fbdd4451395066957e24909cc https://www.lintcode.com/problem/161/ 思路 Java代码 import java.util.*;public class Solution {/*** 代码中的类名、方法名、参数名已经指定&#xff0c;请勿修改&#…

Transformer 动画讲解:单头注意力和多头注意力

暑期实习基本结束了&#xff0c;校招即将开启。 不同以往的是&#xff0c;当前职场环境已不再是那个双向奔赴时代了。求职者在变多&#xff0c;HC 在变少&#xff0c;岗位要求还更高了。提前准备才是完全之策。 最近&#xff0c;我们又陆续整理了很多大厂的面试题&#xff0c…

用 Python 撸一个 Web 服务器-第4章:动态渲染数据

上一章中为了尽快让 Todo List 程序跑起来&#xff0c;并没有完全按照 MVC 模式编写程序。这一章就让我们一起实现一个完整的 MVC 模式 Todo List 程序首页。 使用模型操作数据 我们来分析下请求 Todo List 程序首页时&#xff0c;模型层需要做哪些事情。当一个请求到达首页视…

区间预测 | Matlab实现LSTM-ABKDE长短期记忆神经网络自适应带宽核密度估计多变量回归区间预测

区间预测 | Matlab实现LSTM-ABKDE长短期记忆神经网络自适应带宽核密度估计多变量回归区间预测 目录 区间预测 | Matlab实现LSTM-ABKDE长短期记忆神经网络自适应带宽核密度估计多变量回归区间预测效果一览基本介绍程序设计参考资料 效果一览 基本介绍 1.Matlab实现LSTM-ABKDE长…

Web学习_SQL注入_联合查询注入

UNION 操作符用于合并两个或多个 SELECT 语句的结果集&#xff0c; UNION 结果集中的列名总是等于 UNION 中第一个 SELECT 语句 中的列名&#xff0c;并且UNION 内部的 SELECT 语句必须拥有相同数量的 列。 联合查询注入就是利用union操作符&#xff0c;将攻击者希望查询的语句…

【QT5】<总览五> QT多线程、TCP/UDP

文章目录 前言 一、QThread多线程 二、QT中的TCP编程 1. TCP简介 2. 服务端程序编写 3. 客户端程序编写 4. 服务端与客户端测试 三、QT中的UDP编程 1. UDP简介 2. UDP单播与广播程序 前言 承接【QT5】&#xff1c;总览四&#xff1e; QT常见绘图、图表及动画。若存在…

[Vue-常见错误]浏览器显示Uncaught runtime errors

文章目录 错误描述正确写法具体如下 错误描述 当前端代码发生错误时&#xff0c;浏览器中出现以下错误提示。 正确写法 显然这不是我们所期望的&#xff0c;在vue.config.js中配置如下设置关闭Uncaught runtime errors显示 devServer: {client: {overlay: false}具体如下 …

Java核心: 类加载器

这一节我们来学习Java的类加载器&#xff0c;以及常用的类加载器实现URLClassLoader。 1. Java类加载器 类加载器用于将字节码读取并创建Class对象。我们知道JVM本身是用C写的&#xff0c;一开始执行的时候由C程序来加载并引导字节码的运行&#xff0c;这些由C编写的加载字节…

图神经网络(GNN)的原理及应用

什么是图神经网络 &#xff08;GNN&#xff09;&#xff1f; 图神经网络 &#xff08;GNN&#xff09; 是一种神经网络架构和深度学习方法&#xff0c;可以帮助用户分析图&#xff0c;使他们能够根据图的节点和边描述的数据进行预测。 图形表示数据点&#xff08;也称为节点&…

ENSP校园网设计实验

前言 哈喽&#xff0c;我是ICT大龙。本次更新了使用ENSP仿真软件设计校园网实验。时间比较着急&#xff0c;可能会有错误&#xff0c;欢迎大家指出。 获取本次工程文件方式在文章结束部分。 拓扑设计 拓扑介绍---A校区 如图&#xff0c;XYZ大学校园网设计分为3部分&#xff0…