股票数据集2-纳斯达克NASDAQ 100 分析

news2024/12/24 10:07:13

1. 数据清洗

  • 用邻近均值的方法,去掉Non_Padding中的NaN数据

    • 这里没用df.fillna(), 因为其只有前向(ffill )和 后向 (bfill) 插值,不适合大量连续的NaN

    • pd转换为np,写一个函数, 返回np数组的空值,lambda的匿名函数返回y轴空值的索引

代码和输出如下:

#数据清洗,去除NaN数据,用邻近均值做填充(padding)
df = pd.read_csv(full) # nrows=3
columns = df.columns
print(df.shape)
print(df.columns)

print(df.iloc[:5,:8])
def nan_helper(y):
    return np.isnan(y), lambda z: z.nonzero()[0]

data = df.to_numpy()
for col in range(data.shape[1]):
    nans, x = nan_helper(data[:,col])
    data[nans,col] = np.interp(x(nans),x(~nans),data[~nans,col])

df = pd.DataFrame(data,columns = columns)
print(df[:5,:8]) # .round(4)

在这里插入图片描述

2.数据可视化

  • 画出n个公司的走势,对比指数的走势
    在这里插入图片描述
    在这里插入图片描述
  • 画出index, date, close, high, low, open, volume的走势,分析close与其他特征

单只股票AAL的3天走势图(2016-07-26-29),共七个特征:
在这里插入图片描述

  • 特征1是连续时间,特征2是当天时间

  • 后面四个是股价特征(收盘价、最高价、最低价、开盘价),其都是1分钟内的特征值,所以整体相似

  • 最后一个是成交量

3.特征选择-相关性分析

3.0 前后特征选择

特征作为算法模型的输入,可以通过一种最原始的方法逐步筛选出有效特征

  • 前向选择

    从0开始,根据模型性能表现,逐步添加重要特征

  • 后向选择

    相反,从满特征开始,逐各剔除不重要特征

3.1 线性相关系数

  • pearson : standard correlation coefficient
  • spearman : Spearman rank correlation
  • kendall : Kendall Tau correlation coefficient

3.1.1 Person (皮尔逊相关系数 )

皮尔逊相关系数(Pearson correlation coefficient)是衡量两个连续变量之间线性关系强度和方向的统计量。

它是一个介于 -1 和 1 之间的值,其中:

  • 当两个变量完全正相关时,皮尔逊相关系数为 1。
  • 当两个变量完全负相关时,皮尔逊相关系数为 -1。
  • 当两个变量之间没有线性关系时,皮尔逊相关系数接近于 0。

代码:

correlations = df.corr(method=‘pearson’)[‘NDX’].iloc[:-1] # Pearson, NDX就是 Nasdaq-100指数

分析此相关系数,可以将正负相关性较小特征股票剔除,如 [-0.25, 0.25]以内的股票
在这里插入图片描述

3.1.2 Spearman (斯皮尔曼相关系数)

correlations = df.corr(method=‘spearman’)[‘NDX’].iloc[:-1] # Spearman

斯皮尔曼相关系数(Spearman correlation coefficient)是一种非参数统计量,用于衡量两个变量之间的相关性,不要求变量之间的是线性关键。

Spearman通过比较变量的等级顺序来衡量它们之间的相关性。

斯皮尔曼相关系数的取值范围为 -1 到 1,其中:

  • 当两个变量完全正相关时,斯皮尔曼相关系数为 1。

  • 当两个变量完全负相关时,斯皮尔曼相关系数为 -1。

  • 当两个变量之间没有单调关系时,斯皮尔曼相关系数接近于 0。

与皮尔逊相关系数不同,斯皮尔曼相关系数可以发现变量之间的任何单调关系,不仅限于线性的递增或递减关系。

因此,相比Person, 此方法算出的“不相关”股票更多,如图:
在这里插入图片描述

3.1.3 Kendall (秩相关系数)

correlations = df.corr(method=‘kendall’)[‘NDX’].iloc[:-1] # Kendall
在这里插入图片描述

Kendall tau是一种用于衡量两个变量之间的非线性关系的统计量。它衡量了两个变量的等级之间的协调性,即它们的等级排名是否是一致的。

Kendall秩相关系数的计算方法是Spearman斯皮尔曼相关系数的改进,但不同之处在于它考虑了等级之间的对比对数(concordant pairs)和不一致对(discordant pairs)。

Kendall在处理有序分类数据或评级数据等情况时更有效,特别是当数据存在等级关系但不满足线性相关的假设时。

Kendall的计算量要大一些(慢),整体结果和Spearman相同:
在这里插入图片描述
后续特征分析还有:

3.2 互信息

Entropy & 熵

3.3 梯度提升树 (Gradient Boosting Trees)

XGBoost (eXtreme Gradient Boosting)梯度下降分析

3.4 主成分分析PCA

协方差矩阵的特征值

对3.3和3.4感兴趣的可以订阅支持我的微信公众号:

股票数据集2-纳斯达克NASDAQ 100 分析

  • https://mp.weixin.qq.com/s/8Xhe0ir7QEWIYmtThqo0ew

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1806591.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

CSAPP Lab01——Data Lab完成思路

陪你把想念的酸拥抱成温暖 陪你把彷徨写出情节来 未来多漫长再漫长还有期待 陪伴你 一直到 故事给说完 ——陪你度过漫长岁月 完整代码见:CSAPP/datalab-handout at main SnowLegend-star/CSAPP (github.com) 01 bitXor 这道题是用~和&计算x^y。 异或是两个…

mongodb总概

一、mongodb概述 mongodb是最流行的nosql数据库,由C语言编写。其功能非常丰富,包括: 面向集合文档的存储:适合存储Bson(json的扩展)形式的数据;格式自由,数据格式不固定,生产环境下修改结构都可以不影响程序运行;强大的查询语句…

著名AI人工智能社会学家唐兴通谈数字社会学网络社会学主要矛盾与数字空间社会网络社会的基本议题与全球海外最新热点与关注社会结构社会分工数字财富数字游民数字经济

如果人工智能解决了一切,人类会做什么? 这个问题的背后是人工智能时代的社会主要矛盾会是什么?那么整个社会的大的分工体系就会围绕主要矛盾开展。 《人工智能社会主要矛盾》 在农业社会,主要矛盾是人口增长和土地资源之间的关…

atcoder abc357

A Sanitize Hands 问题&#xff1a; 思路&#xff1a;前缀和&#xff0c;暴力&#xff0c;你想咋做就咋做 代码&#xff1a; #include <iostream>using namespace std;const int N 2e5 10;int n, m; int a[N];int main() {cin >> n >> m;for(int i 1…

【日常记录】【JS】中文转拼音的库 pinyin-pro

文章目录 1、介绍2、pinyin-pro 基本使用3、参考链接 1、介绍 pinyin-pro 是一个专业的 JavaScript 中文转拼音的库&#xff0c;具备多音字识别准确、体积轻量、性能优异、功能丰富等特点。 常用的案例 搜索功能增强&#xff1a;在输入框输入汉字时&#xff0c;可以转化为拼音输…

英特尔:AI落地,未来已来

引言 随着AI技术的发展和大模型的普及&#xff0c;人工智能正在逐渐渗透到我们的日常生活中。2023年5月底&#xff0c;我参加了台北的英特尔技术展&#xff0c;深入了解了英特尔在AI个人电脑领域的最新进展。本文将详细介绍英特尔的新一代移动处理器Lunar Lake&#xff0c;以及…

【C51】C51单片机实现的 抽奖机 设计与编程指南

文章目录 前言&#xff1a;1. 实现效果2. 准备工作3. 编写代码总结&#xff1a; 前言&#xff1a; 在本文中&#xff0c;我们将介绍如何使用C51单片机来实现一个简单的抽奖机。这个项目不仅能够展示C51单片机的基本应用&#xff0c;还能让我们了解如何通过编程来控制硬件&…

卡尔曼滤波器例子

卡尔曼滤波器 卡尔曼滤波器(Kalman Filter)是一种用于线性系统状态估计的递归算法,可以有效地融合传感器数据和系统模型来估计系统的状态。它在机器人学中广泛应用,尤其是位置和速度等状态的估计。通过卡尔曼滤波器,可以有效地估计机器人在二维平面内的真实位置,并减小测…

探地雷达正演模拟,基于时域有限差分方法,一

声明&#xff1a;本博客中的公式均是在Word中使用AxMath写好后截图使用的&#xff0c;欢迎引用&#xff0c;但请标注来源。 本系列会有四篇博客&#xff1a; 第一篇内容&#xff1a; 1、基础知识掌握 2、Maxwell方法差分求解原理 第二篇内容&#xff1a; 1、基于C的TE波波…

Nvidia/算能 +FPGA+AI大算力边缘计算盒子:大疆RoboMaster AI挑战赛

NVIDIA Jetson TX2助力机器人战队斩获RoboMaster AI挑战赛冠亚军 一个汇聚数百万机器人专家与研究人员的赛场&#xff0c;一场兼具工程、策略和团队挑战的较量&#xff0c;说的正是近日刚刚在澳大利亚布里斯本ICRA大会上闭幕的大疆RoboMaster AI挑战赛今年的冠军I Hiter以及亚军…

Macbook M芯片Maven的安装与配置

Macbook M芯片Maven的安装与配置 下载 搜索Maven 进入网站 https://maven.apache.org/download.cgi 点击Download 点击如下链接进行下载&#xff1b; 将下载好的文件放到你的指定位置 双击进行解压 配置环境变量 进入终端 在终端中输入 open ~/.bash_profile输入以下内…

UI学习(二)

UI学习&#xff08;二&#xff09; 文章目录 UI学习&#xff08;二&#xff09;布局子视图手动布局自动布局 导航控制器导航控制器基础导航控制器的切换导航栏工具栏 分栏控制器分栏控制器协议部分的内容UITableView基础部分相关的协议函数高级协议与单元格 多界面传值 布局子视…

csdn上传图片失败解决办法

今天下午写笔记&#xff0c;上传图片的时候总是出现图片上传不成功。查询了下解决方案&#xff1a; C:\Windows\System32\drivers\etc &#xff0c;使用管理员打开hosts文件加入&#xff1a; 49.7.22.7 csdn-img-blog.oss-cn-beijing.aliyuncs.com保存之后&#xff0c;&#x…

【JavaEE】Spring IoCDI详解

一.基本概念 1.Ioc基本概念 Ioc: Inversion of Control (控制反转), 也就是说 Spring 是⼀个"控制反转"的容器. 什么是控制反转呢? 也就是控制权反转. 什么的控制权发发了反转? 获得依赖对象的过程被反转了也就是说, 当需要某个对象时, 传统开发模式中需要自己通…

中国宠业新锐品牌展,2024苏州国际宠物展6月28日开展!

中国宠业新锐品牌展&#xff0c;2024苏州国际宠物展6月28日开展&#xff01; ​ 第2届华东国际宠物用品展览会(苏州)暨中国宠业新锐品牌展&#xff0c;将于6月28日-30日在苏州国际博览中心盛大举办&#xff0c;锁定年中市场黄金档期&#xff0c;同期以“NB展&#xff0c;更新鲜…

Letcode-Top 100二叉树专题

94. 二叉树的中序遍历 方法一&#xff1a;递归法 /*** Definition for a binary tree node.* public class TreeNode {* int val;* TreeNode left;* TreeNode right;* TreeNode() {}* TreeNode(int val) { this.val val; }* TreeNode(int val, TreeN…

2024.6.9 四

Python的异常处理 在python里,错误和异常是不同的概念 错误: Python 的语法错误或者称之为解析错,大多是因为写代码写错了出现的 异常: 即便 Python 程序的语法是正确的&#xff0c;在运行它的时候&#xff0c;也有可能发生错误。运行期检测到的错误被称为异常。 大多数的异常…

详解大厂实时数仓建设V4.0

一、实时数仓建设背景 1. 实时需求日趋迫切 目前各大公司的产品需求和内部决策对于数据实时性的要求越来越迫切&#xff0c;需要实时数仓的能力来赋能。传统离线数仓的数据时效性是 T1&#xff0c;调度频率以天为单位&#xff0c;无法支撑实时场景的数据需求。即使能将调度频…

【Spring Boot】异常处理

异常处理 1.认识异常处理1.1 异常处理的必要性1.2 异常的分类1.3 如何处理异常1.3.1 捕获异常1.3.2 抛出异常1.3.4 自定义异常 1.4 Spring Boot 默认的异常处理 2.使用控制器通知3.自定义错误处理控制器3.1 自定义一个错误的处理控制器3.2 自定义业务异常类3.2.1 自定义异常类3…

【小沐学Python】Python实现Web服务器(CentOS下打包Flask)

文章目录 1、简介2、下载Python3、编译Python4、安装PyInstaller5、打包PyInstaller6、相关问题6.1 ImportError: urllib3 v2 only supports OpenSSL 1.1.1, currently the ssl module is compiled with OpenSSL 1.0.2k-fips 26 Jan 2017. See: https://github.com/urllib3/url…