R语言探索与分析18-基于时间序列的汇率预测

news2025/1/6 4:46:36

一、研究背景与意义

汇率是指两个国家之间的货币兑换比率,而且在国家与国家的经济交流有着举足轻重的作用。随着经济全球化的不断深入,在整个全球经济体中,汇率还是一个评估国家与国家之间的经济状况和发展水平的一个风向标。汇率的变动会对一个国家的对外贸易频繁度、外汇储备以及对于国内的物价水平都会产生一定的影响。故针对于汇率的变动,应该采取相应的措施及政策。....

二、国内外研究现状及总结

随着我国经济的不断发展进步,人民币在国际上的地位逐渐提升,出现了大批学者对于汇率的研究,其研究的角度有许多,其中具有代表性的有:研究影响汇率波动的因素、关于汇率政策与制度的研究以及通过建立适当的模型来进行汇率波动的研究和预测,个人看来,其中最为主流的角度还是建立相应的模型来进行研究。.....

三、研究对象

本文的研究对象是2009年至2020年的中美的月度汇率数据,数据来源于雅虎财经网,其中包括每月开盘、收盘价,每月最高价最低价以及涨跌幅度。为了分析清晰,本文选择了每月收盘价为主要序列数据。

首先将所获取得到的数据进行清洗、缺失值处理等预处理操作。然后将处理好的数据进行分析,然后选择适当的模型进行预测,最后得出相应的结论。

四、主要研究内容和方法

本文主要是以时间序列分析为主要基础,针对特定时间段内的中美汇率波动来分析建模以及预测后期的汇率走势,重点介绍本论文研究主要运用的ARIMA模型以及ARCH、GARCH模型的理论,然后针对数据来进行实证分析,做出相应的预测。....

五、模型知识概述

六、实证分析

本文选取了2009年1月至2020年1月的中美汇率月度数据,其中数据包括每月的开盘价(open),收盘价(close),每月中最高点、最低点数据以及汇率变动比率等等,为了研究的更好进行,本文选择的是每月的收盘价为主要数据来进行分析及操作。

pop<-read.table("D:/网页下载/USD_CNY历史数据.csv",sep=",",header = T)
pop
pirce<-pop$close
HL<-ts(pirce,frequency = 12,start = 2009)
plot(HL,main = "汇率变动",xlab = "年份",ylab="汇率变动量")
#白噪声检验
for(i in 1:2) print(Box.test(HL,type = "Ljung-Box",lag=6*i))

随后,对于本文的时序数据进行描述性统计,其具体结果如下表:

表  时序数据描述性统计

Min

1st  Qu

Median

Mean

3rd Qu

Max

6.054

6.284

6.584

6.562

6.827

7.154

其次,进行纯随机性检验,只有当序列为非白噪声序列,才能进行后续操作,否则是无意义的。

表  纯随机性检验

Box-Ljung test

Data:  2009年1月-2020年1月

X-squared = 664.74

df=6

P_value<2.2e-16

X-squared = 1029.8

Df=12

P_value<2.2e-16

 

从图分析,中美的月度汇率的时间序列图形在2009年-2020波动起伏较大,可见受许多政治、经济等因素的影响,单从时序图可以判断,该序列是属于非平稳序列 

为了保证其科学性,下一步需要做关于该序列的ADF单根检验。

表  中美汇率的ADF检验

Augmented Dickey-Fuller Test

Alternative : stationary

Type 1:no drift no trend

Lag:

ADF

P_value

0

-0.454

0.513

1

-0.396

0.530

2

-0.384

0.533

3

-0.372

0.537

4

0.378

0.535

Type 2: with drift no trend

0

-1.49

0.526

1

-1.95

0.347

2

-1.93

0.356

3

-2.08

0.296

4

-1.93

0.354

Type 2: with drift with trend

0

-1.71

0.696

1

-2.16

0.504

2

-2.15

0.510

3

-2.29

0.452

4

-2.19

0.493

从上表可以看出,其P值大于0.05的显著性水平,故在0.05的显著性水平下,接受其原假设,即表明该序列为非平稳序列。 

从上表3.3可以看出,其P值大于0.05的显著性水平,故在0.05的显著性水平下,接受其原假设,即表明该序列为非平稳序列。

#打印出关于季节性趋势的图表
dc<-decompose(HL)
season<-dc$figure
plot(season,type = "b",xaxt="n",xlab = "Month",ylab = "Season Effect")

由于本文数据为汇率数据,该类型数据通常具有集聚效应,故在序列为平稳序列基础上,查看其差分之后差分图。

#差分和画出差分图
diff(HL)
plot(diff(HL))

win.graph(width=3.25,height=2.5,pointsize=8)
tsdisplay(diff(HL))
dc<-decompose(diff(HL))
plot(dc)

模型选择

#ARIMA(1,1,)
model=Arima(HL,order=c(1,1,0))
summary(model)#aic = -2588.36

Training set error measures:

Series: 中美汇率

ARIMA(0,1,1)

Coefficients:

ma1

0.3127

s.e.

0.0811

Sigma^2=0.004074:

Log likelihood =191.02

AIC=-378.04

AICc=-377.95

BIC=-372.11

ME

RMASE

MAE

MPE

MAPE

MASE

ACF1

Training set

-0.0016

0.0634

0.0447

-0.0260

-0.6762

0.2001

0.0067

无论是AIC准则还是BIC准则,模型都定位一个模型,即ARIMA(0,1,1)。并且也可从表中得出模型的各个评判指标。最终模型的表达式应为: 

接下来进行残差分析

接下来GARCH检验及预测看是否存在ARCH效应。

ARCH LM-test  ;  null hypothesis:  no ARCH effects

Data: model$residual

Chi-squared=2.9169

df=1

P_value=0.08766

Chi-squared=3.0018

df=2

P_value=0.0229

Chi-squared=9.0705

df=3

P_value=0.02837

Chi-squared=10.198

df=4

P_value=0.03722

Chi-squared=12.263

df=5

P_value=0.03136

进一步,运用所得到的模型进行预测,本文由于是月度数据,所以为了保证预测的准确性,将预测阶数定为5阶,其最终预测结果如下图和表。

###模型预测
model=Arima((HL),order=c(0,1,1),include.mean = T,transform.pars=T)
model
#预测未来5期,99.5%置信区间
forecast<-forecast(model,h=5,levels=c(95.5))
forecast
##可视化预测图
plot(forecast)

七、结论与展望

本文通过分析2009年1月至2020年1月的中美汇率,首先通过差分,将序列变为平稳序列,再通过季节因素提取,提取出其他因素,然后进行ARCH检验(本文是LM检验),最后建立模型ARCH(1,1)和ARIMA(0,1,1)进行分析和预测,最终预测结果表现为中美汇率的整体趋势是往下波动。但是随着时间周期的变成,预测误差变得越来越大,这可能是传统预测模型的缺陷所在.....

代码和数据

代码和完整报告

创作不易,希望大家多多点赞收藏和评论!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1803931.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

嵌入式Linux系统编程 — 3.3 chown、fchown 和 lchown 函数更改文件属主

目录 1 文件属主 1.1 文件属主概念 1.2 如何查看文件属主 1.3 有效用户 ID 和有效组 ID 2 chown 函数 2.1 chown命令 2.2 chown函数 2.3 getuid 和 getgid函数 3 fchown函数 3.1 fchown函数简介 3.2 示例代码 4 lchown函数 1 文件属主 1.1 文件属主概念 Linux…

“中新美”三重身份,能帮SHEIN解决上市问题吗?

一家公司的海外上市之路能有多复杂&#xff1f;辗转多地的SHEIN&#xff0c;可能是当前最有话语权回答这个问题的公司。最近&#xff0c;它又有了新消息。 在上市信息多次更改后&#xff0c;伦敦正在成为SHEIN最有可能的“着陆”点。巴伦周刊援引英国天空新闻报道称&#xff0…

可以抛弃纸质礼金簿了,以后登记礼金可以用这款小程序

可以抛弃纸质礼金簿了&#xff0c;以后登记礼金可以用这款小程序 小程序介绍使用主要技术代码来源项目演示首页和我的关于和设置收礼功能送礼功能我的家庭和数据统计 总结 大家好&#xff0c;这里是程序猿代码之路&#xff0c;先说说为什么想搞这一个小程序呢&#xff0c;主要是…

Unity 编辑器扩展 一键替换指定物体下的所有材质球

先看效果 实现方案 1&#xff1a;创建几个用于测试的Cube 2&#xff1a;创建一个脚本 3:编写脚本内容 主要是这部分的逻辑 附上完整代码 using System.Collections; using System.Collections.Generic; using UnityEditor; using UnityEngine;public class Tool {[MenuItem(…

计算机基础(8)——音频数字化(模电与数电)

&#x1f497;计算机基础系列文章&#x1f497; &#x1f449;&#x1f340;计算机基础&#xff08;1&#xff09;——计算机的发展史&#x1f340;&#x1f449;&#x1f340;计算机基础&#xff08;2&#xff09;——冯诺依曼体系结构&#x1f340;&#x1f449;&#x1f34…

vscode输出控制台中文显示乱码最有效解决办法

当VSCode的输出控制台中文显示乱码时&#xff0c;一个有效的解决办法是通过设置环境变量来确保编码的正确性。以下是解决方式&#xff1a; 首先&#xff0c;设置环境变量以修正乱码问题&#xff1a; 如果上述方法没有解决乱码问题&#xff0c;请继续以下步骤&#xff1a; 右键…

JSON 格式说明

文章目录 一、关于 JSON二、JSON 常见格式1、对象2、数组3、值4、字符串5、数值6、空白 三、各语言对 Json 的支持 官网&#xff1a;https://www.json.org/json-en.html (本文翻译自此) 一、关于 JSON JSON&#xff08;JavaScript Object Notation&#xff09;是一种轻量级的数…

【CS.CN】深入探讨下HTTP的Connection头:通过keep-alive实现高效网络连接

文章目录 0 序言0.1 由来0.2 使用场景0.3 现在还需要吗&#xff1f; 1 Connection: keep-alive的机制2 语法 && 通过设置Connection: keep-alive优化性能3 验证与性能提升4 总结References 0 序言 0.1 由来 Connection头部字段在HTTP/1.1中被引入&#xff0c;主要用于…

Linux安装RocketMQ教程【带图文命令巨详细】

巨详细Linux安装Nacos教程RocketMQ教程 1、检查残留版本2、上传压缩包至服务器2.1压缩包获取2.2创建相关目录 3、安装RocketMQ4、配置RocketMQ4.1修改runserver.sh和runbroker.sh启动脚本4.2新增broker.conf配置信息4.3启动关闭rocketmq4.4配置开机自启动&#xff08;扩展项&am…

Vxe UI vue 使用 VxeUI.previewImage() 图片预览方法

Vxe UI vue 使用 VxeUI.previewImage() 图片预览方法的调用 查看 github 代码 调用全局方法 VxeUI.previewImage() 参数说明&#xff1a; urlList&#xff1a;图片列表&#xff0c;支持传字符串&#xff0c;也可以传对象数组 [{url: xx’l}] activeIndex&#xff1a;指定默…

力扣经典面试题-旋转链表(Java)

1.题目描述&#xff1a;给你一个链表的头节点 head &#xff0c;旋转链表&#xff0c;将链表每个节点向右移动 k 个位置。 示例 1&#xff1a; 输入&#xff1a;head [1,2,3,4,5], k 2 输出&#xff1a;[4,5,1,2,3] 示例 2&#xff1a; 输入&#xff1a;head [0,1,2], k …

stanfordcorenlp+python做中文nlp任务,得到的结果中全是空字符串,而不是中文字符串

问题描述 代码&#xff1a; from stanfordcorenlp import StanfordCoreNLP import logging#中文中的应用&#xff0c;一定记得下载中文jar包&#xff0c;并标志lang‘zh’ nlp_zh StanfordCoreNLP(rD:\stanford-corenlp-full-2016-10-31, port8094, langzh,quietFalse,logg…

基于YOLOv8的海面石油泄露检测实例分割完整含数据集

需要收集包含海面石油泄漏的图像数据集&#xff0c;并进行标注以指示泄漏区域。接下来&#xff0c;可以使用深度学习框架如PyTorch或TensorFlow&#xff0c;基于YOLO&#xff08;You Only Look Once&#xff09;系列的目标检测模型结构&#xff0c;进行训练。YOLO系列的模型具有…

电压模式 R-2R DAC 的工作原理和特性

在本文中&#xff0c;我们将探索什么是 R-2R DAC 以及如何实现它们。 首先&#xff0c;我们将简要回顾一下开尔文分频器 DAC。这种结构很简单&#xff0c;但需要大量电阻和开关来实现高分辨率 DAC。此问题的一种解决方案是称为 R-2R DAC 的 DAC 结构。这些结构巧妙地利用梯形网…

Elasticsearch 认证模拟题 - 14

一、题目 在集群中输入以下指令&#xff1a; PUT phones/_doc/1 {"brand":"Samsumg","model":"Galaxy S9","features":[{"type":"os", "value":"Android"},{"type":&q…

李飞飞解读创业方向:「空间智能」

在AI领域&#xff0c;李飞飞教授一直是一个举足轻重的存在。她的研究和见解不仅推动了计算机视觉的发展&#xff0c;更对人工智能的未来方向产生了深远的影响。在最近的一次演讲中&#xff0c;李飞飞详细解读了她对于「空间智能」的见解。本文将对她的演讲内容进行详细解读&…

如何使用GPT-4o函数调用构建一个实时应用程序?

本教程介绍了如何使用OpenAI最新的LLM GPT-4o通过函数调用将实时数据引入LLM。 我们在LLM函数调用指南(详见https://thenewstack.io/a-comprehensive-guide-to-function-calling-in-llms/)中讨论了如何将实时数据引入聊天机器人和代理。现在&#xff0c;我们将通过将来自Fligh…

持续警惕火灾风险:学校可燃气体报警器的定期校准检验

可燃气体报警器在学校中的安装、检验和校准对于保护师生生命安全至关重要。 接下来&#xff0c;佰德将探讨可燃气体报警器在学校中的必要性&#xff0c;以及相关实际案例和数据&#xff0c;为您呈现一个安全的学习环境。 一、学校安全不能掉以轻心 学校是培养未来的摇篮&…

Android限制参数传递之StringDef注解的使用

文章目录 1. 引言2. 注解 StringDef2.1 举例2.2 StringDef源码解释 3. 其他类似注解 IntDef、LongDef4. 总结 1. 引言 在参数传递时&#xff0c;如果你想限制传入的参数只能是特定的几个值&#xff0c;该怎么做呢&#xff1f; 除了把参数类型定义为枚举值&#xff0c;还可以使…

Boom 3D软件最新版下载及详细安装教程

值得肯定的是Boom 3D最新版新增的Boom音量控制器和Controlled Boost功能为使用者提供了一个完美的控制&#xff0c;通过一个整齐的设计切换栏的系统音频输出&#xff0c;帮助他们轻松调整音量&#xff0c;从而让他们实现理想的音频输出&#xff0c;有需要的欢迎来开心电玩下载使…