PaddleSpeech MFA:阿米娅中文音色复刻计划

news2024/11/28 12:39:40

PaddleSpeech:阿米娅中文音色复刻计划

本篇项目是对iterhui大佬项目[PaddleSpeech 原神] 音色克隆之胡桃的复刻,使用的PaddleSpeech的版本较新,也针对新版本的PaddleSpeech做了许多配置之上的更新并加入了自己对语音的对齐、配置、训练其它任何语音音色的模块。

本篇项目旨在利用PaddleSpeech框架实现音色克隆技术,目标是复制并生成游戏《明日方舟》中的干员阿米娅(Amiya)的中文语音音色。

1. 配置 PaddleSpeech 开发环境

安装 PaddleSpeech 并在 PaddleSpeech/examples/other/tts_finetune/tts3 路径下配置 tools,下载预训练模型

In [ ]

# # 配置 PaddleSpeech 开发环境
!git clone https://gitee.com/paddlepaddle/PaddleSpeech.git
%cd /home/aistudio/
%cd PaddleSpeech
!pip install .  --user -i https://mirror.baidu.com/pypi/simple
# # 下载 NLTK
# %cd /home/aistudio
# !wget -P data https://paddlespeech.bj.bcebos.com/Parakeet/tools/nltk_data.tar.gz
# !tar zxvf data/nltk_data.tar.gz

In [ ]

# 查看paddlespeech是否正常安装,如果未安装,重新运行上一单元格。
!pip show paddlespeech

In [ ]

# 安装必要库
!pip install prettytable
!pip install soundfile
!pip install librosa
!pip install paddleaudio==1.0.1
!pip install h5py
!pip install loguru
!pip install python_speech_features
!pip install jsonlines
!pip install kaldiio

In [7]

# 删除软链接
# aistudio会报错: paddlespeech 的 repo中存在失效软链接
# 执行下面这行命令!!
!find -L /home/aistudio -type l -delete

In [ ]

# 配置 MFA & 下载预训练模型
%cd /home/aistudio
!bash env.sh

In [ ]

# 配置 MFA & 下载模型及词典
!mkdir -p tools
%cd tools
# mfa tool
!wget https://github.com/MontrealCorpusTools/Montreal-Forced-Aligner/releases/download/v1.0.1/montreal-forced-aligner_linux.tar.gz
!tar xvf montreal-forced-aligner_linux.tar.gz
!cp montreal-forced-aligner/lib/libpython3.6m.so.1.0 montreal-forced-aligner/lib/libpython3.6m.so
# pretrained mfa model(预置的对齐模型和词典)
!mkdir -p aligner
%cd aligner
!wget https://paddlespeech.bj.bcebos.com/MFA/ernie_sat/aishell3_model.zip
!unzip aishell3_model.zip
!wget https://paddlespeech.bj.bcebos.com/MFA/AISHELL-3/with_tone/simple.lexicon
%cd ../../

In [ ]

# 拷贝mfa词典重构模型压缩包到指定目录
!cp /home/aistudio/data/data260888/mandarin_pinyin_g2p.zip -d /home/aistudio/tools/montreal-forced-aligner/pretrained_models/mandarin_pinyin_g2p.zip

2 数据集配置

本项目数据集提供了完整的wav、labelx以及MFA对齐标注文件

如果要自行对齐,请去PaddleSpeech查阅完整资料或参考后面的示例

Finetune your own AM based on FastSpeech2 with multi-speakers dataset.

解压文件中的

音频

work/dataset/阿米娅/wav/xx.wav

和标签

work/dataset/阿米娅/wav/labels.txt

对齐的textgrid

work/dataset/阿米娅/textgrid/newdir/xx.TextGrid

本项目采用阿米娅的声音完成

2.1 解压现有阿米娅音色数据集

In [ ]

%cd /home/aistudio/
!unzip /home/aistudio/data/data260882/dataset.zip -d work/

2.2 新音色数据集制作

制作MFA对齐标注文件

想要复刻自己找的语音音色提前要做的准备:

  1. 准备wav语音文件(建议30个文件以上,每个文件大约几秒的语音)
  2. 准备label.txt文件(该文件每行以“|”分割。左侧中文文字,右侧中文拼音,每个拼音后跟1、2、3、4表示音调,如下图)
  3. 按照以下目录格式存放指定文件:

制作过程:

  1. 使用label.txt文件生成各语音文件的lab文件
  2. 使用wav语音文件及对应lab拼音文件(将所有wav语音文件及对应lab拼音文件放在一个文件夹tmp中使用,注意不包含label.txt文件及其他任何文件)、mfa词典重构模型压缩包生成lexicon/txt字典文件(也可以使用别人上传的比较全的字典文件)
  3. 使用wav语音文件及对应lab拼音文件(将所有wav语音文件及对应lab拼音文件放在一个文件夹tmp中使用,注意不包含label.txt文件及其他任何文件)、lexicon/txt字典文件、mfa对齐模型压缩包生成对应textgrid文件
  4. 整理数据集文件目录,得到最终能直接拿来训练的数据集(下图中的txt文件为lab文件更改拓展名后得到,不确定是否能直接将lab代替txt使用,有兴趣的可以试一下)

最终能直接拿来训练的数据集目录结构: 

In [24]

# 生成lab文件
def txt2lab(txtPath, outPath="/home/aistudio/work/dataset/阿米娅/tmp/"):
    if not os.path.exists(outPath):
        os.makedirs(outPath)
    labelPath = txtPath + "labels.txt"
    with open(labelPath, "r") as f:
        lines = f.readlines()
        for line in lines:
            line = line.strip()
            name, pinyin = line.split("|")[0], line.split("|")[1]
            with open(outPath + name + ".lab", "w") as w:
                w.write(pinyin)
            os.system("cp {} {}".format(txtPath + name + ".wav", outPath + name + ".wav"))

txt2lab("/home/aistudio/work/dataset/阿米娅/wav/")

In [ ]

%cd /home/aistudio/tools/montreal-forced-aligner/bin/
# # 生成字典1(工具实现)
!mfa_generate_dictionary /home/aistudio/tools/montreal-forced-aligner/pretrained_models/mandarin_pinyin_g2p.zip /home/aistudio/work/dataset/阿米娅/tmp /home/aistudio/work/dataset/阿米娅/a.lexicon

# # 生成词典2(手动实现)
# # 代码片段2:生成小字典

# #全量字典:拼音->音素
# dictionary = r'D:\download\tmp\dictionary.txt'
# def getDictionary(dictionary = dictionary):
#     """
#         :param dictionary: 字典文件,每一行包含一个拼音及对应的音素,例如 "bao1 b ao1\nbeng1 b e1 ng\n"
#         :return: 字典:key是拼音,value是拼音及对应的音素,例如 key=bao1,value='bao1 b ao1\n'
#     """
#     word2phone = {}
#     with open(dictionary, 'r') as f:
#         line = f.readline()
#         while line:
#             key,value = line.split(' ',1)
#             word2phone[key] = line
#         line = f.readline()
#     return word2phone

# #生成对齐的小字典
# def getTinyDictionaryByFile(corpusPath=r'.\data_thchs30\data',outputFile = 'tinyDictionary.txt'):
# """
# inputFilePath:.lab文件。音频文件及对应的拼音文件所在目录,拼音文件一个汉字一个拼音,拼音间空格分隔如“bian4 hua1”。
# outputFile: 当前音频文件对应的所有文字的拼音形成的小字典,如“bao1 b ao1\n”
# """
# dictionary = getDictionary()
# pattern = re.compile(r'(.*)\.lab$') #只从lab文件找所有的拼音
# tinyDict = {}
# notExistsWord = ''
# for root, dirPath, files in os.walk(corpusPath):
# for readfile in files: ##遍历inputFilePath目录下的所有文件
# if pattern.match(readfile) is not None: #找出.lab文件
# with open(root+"\\"+readfile,'r') as rf: #读取出.lab文件中的所有拼音
# line = rf.readline()
# while line:
# wordList = line.split() #读取拼音
# for word in wordList:
# if word in dictionary.keys():
# tinyDict[word] = dictionary[word]
# else:notExistsWord += word + ' ' + root+"\\"+readfile+'\n';
# line = rf.readline()
# with open(outputFile, 'w') as wf:##结果写入outputFile
# for key in tinyDict:
# wf.write(tinyDict[key])
# if notExistsWord !='': print(notExistsWord)

In [ ]

# # 解决mfa tool运行时缺失文件的问题
# 查找libgfortran.so.3
!find / -name libgfortran.so.3
# 添加环境变量(临时添加)
!export LD_LIBRARY_PATH="The path you found":$LD_LIBRARY_PATH
# 如:export LD_LIBRARY_PATH=/home/user/miniconda3/envs/paddle/lib/python3.9/site-packages/paddle/libs/:$LD_LIBRARY_PATH

In [ ]

# 生成textgrid文件
!mfa_align /home/aistudio/work/dataset/阿米娅/tmp /home/aistudio/tools/aligner/simple.lexicon /home/aistudio/tools/aligner/aishell3_model.zip /home/aistudio/work/dataset/阿米娅/textgrid/newdir
%cd /home/aistudio/

2.3 编写执行cmd函数代码

In [31]

import subprocess

# 命令行执行函数,可以进入指定路径下执行
def run_cmd(cmd, cwd_path):
    p = subprocess.Popen(cmd, shell=True, cwd=cwd_path)
    res = p.wait()
    print(cmd)
    print("运行结果:", res)
    if res == 0:
        # 运行成功
        print("运行成功")
        return True
    else:
        # 运行失败
        print("运行失败")
        return False

2.4 配置各项参数

In [9]

import os

# 试验路径
exp_dir = "/home/aistudio/work/exp"
# 配置试验相关路径信息
cwd_path = "/home/aistudio/PaddleSpeech/examples/other/tts_finetune/tts3"
# 可以参考 env.sh 文件,查看模型下载信息
pretrained_model_dir = "models/fastspeech2_mix_ckpt_1.2.0"

# # 同时上传了 wav+标注文本 以及本地生成的 textgrid 对齐文件
# 输入数据集路径
data_dir = "/home/aistudio/work/dataset/阿米娅/wav"
# 如果上传了 MFA 对齐结果,则使用已经对齐的文件
mfa_dir = "/home/aistudio/work/dataset/阿米娅/textgrid"
new_dir = "/home/aistudio/work/dataset/阿米娅/textgrid/newdir"

# 输出文件路径
wav_output_dir = os.path.join(exp_dir, "output")
os.makedirs(wav_output_dir, exist_ok=True)

dump_dir = os.path.join(exp_dir, 'dump')
output_dir = os.path.join(exp_dir, 'exp')
lang = "zh"

2.5 检查数据集是否合法

In [10]

# check oov
cmd = f"""
    python3 local/check_oov.py \
        --input_dir={data_dir} \
        --pretrained_model_dir={pretrained_model_dir} \
        --newdir_name={new_dir} \
        --lang={lang}
"""

In [11]

# 执行该步骤
run_cmd(cmd, cwd_path)
    python3 local/check_oov.py         --input_dir=/home/aistudio/work/dataset/阿米娅/wav         --pretrained_model_dir=models/fastspeech2_mix_ckpt_1.2.0         --newdir_name=/home/aistudio/work/dataset/阿米娅/textgrid/newdir         --lang=zh

运行结果: 0
运行成功
True

2.6 生成 Duration 时长信息

In [12]

cmd = f"""
python3 local/generate_duration.py \
    --mfa_dir={mfa_dir}
"""

In [9]

!cp -r /home/aistudio/PaddleSpeech/utils /home/aistudio/PaddleSpeech/examples/other/tts_finetune/tts3/local/

In [ ]

!pip install praatio
!pip install yacs

In [14]

# 执行该步骤
run_cmd(cmd, cwd_path)
python3 local/generate_duration.py     --mfa_dir=/home/aistudio/work/dataset/阿米娅/textgrid

运行结果: 0
运行成功
True

2.7 数据预处理

In [15]

cmd = f"""
python3 local/extract_feature.py \
    --duration_file="./durations.txt" \
    --input_dir={data_dir} \
    --dump_dir={dump_dir}\
    --pretrained_model_dir={pretrained_model_dir}
"""

In [ ]

!pip install inflect

In [ ]

import sys
sys.path.append("/home/aistudio/PaddleSpeech/build/lib")
print(sys.path)

In [66]

import paddlespeech
from paddlespeech.t2s.datasets.data_table import DataTable

In [17]

# 执行该步骤
run_cmd(cmd, cwd_path)
33 1
100%|██████████| 33/33 [00:07<00:00,  4.27it/s]
 16%|█▌        | 5/32 [00:00<00:00, 49.52it/s]
All frames seems to be unvoiced, this utt will be removed.
Done
100%|██████████| 32/32 [00:00<00:00, 194.00it/s]
100%|██████████| 1/1 [00:00<00:00,  2.89it/s]
100%|██████████| 1/1 [00:00<00:00, 300.04it/s]
  0%|          | 0/1 [00:00<?, ?it/s]
Done
100%|██████████| 1/1 [00:00<00:00,  3.36it/s]
100%|██████████| 1/1 [00:00<00:00, 327.12it/s]
Done

python3 local/extract_feature.py     --duration_file="./durations.txt"     --input_dir=/home/aistudio/work/dataset/阿米娅/wav     --dump_dir=/home/aistudio/work/exp/dump    --pretrained_model_dir=models/fastspeech2_mix_ckpt_1.2.0

运行结果: 0
运行成功
True

2.8 准备微调环境

In [18]

cmd = f"""
python3 local/prepare_env.py \
    --pretrained_model_dir={pretrained_model_dir} \
    --output_dir={output_dir}
"""

In [19]

# 执行该步骤
run_cmd(cmd, cwd_path)
python3 local/prepare_env.py     --pretrained_model_dir=models/fastspeech2_mix_ckpt_1.2.0     --output_dir=/home/aistudio/work/exp/exp

运行结果: 0
运行成功
True

2.9 微调并训练

不同的数据集是不好给出统一的训练参数,因此在这一步,开发者可以根据自己训练的实际情况调整参数,重要参数说明:

训练轮次: epoch

  1. epoch 决定了训练的轮次,可以结合 VisualDL 服务,在 AIstudio 中查看训练数据是否已经收敛,当数据集数量增加时,预设的训练轮次(100)不一定可以达到收敛状态
  2. 当训练轮次过多(epoch > 200)时,建议新建终端,进入/home/aistudio/PaddleSpeech/examples/other/tts_finetune/tts3 路径下, 执行 cmd 命令,AIStudio 在打印特别多的训练信息时,会产生错误

配置文件:

/home/aistudio/PaddleSpeech/examples/other/tts_finetune/tts3/conf/finetune.yaml

In [39]

# 将默认的 yaml 拷贝一份到 exp_dir 下,方便修改
import shutil
in_label = "/home/aistudio/PaddleSpeech/examples/other/tts_finetune/tts3/conf/finetune.yaml"
shutil.copy(in_label, exp_dir)
'/home/aistudio/work/exp/finetune.yaml'

In [32]

epoch = 100
config_path = os.path.join(exp_dir, "finetune.yaml")

cmd = f"""
python3 local/finetune.py \
    --pretrained_model_dir={pretrained_model_dir} \
    --dump_dir={dump_dir} \
    --output_dir={output_dir} \
    --ngpu=1 \
    --epoch={epoch} \
    --finetune_config={config_path}
"""

In [ ]

!pip install --user paddlepaddle-gpu==2.3.2

In [ ]

# 执行该步骤
# 如果训练轮次过多,则复制上面的cmd到终端中运行
# python3 local/finetune.py --pretrained_model_dir=models/fastspeech2_mix_ckpt_1.2.0 --dump_dir=/home/aistudio/work/exp/dump --output_dir=/home/aistudio/work/exp/exp --ngpu=1 --epoch=250 --finetune_config=/home/aistudio/work/exp/finetune.yaml
run_cmd(cmd, cwd_path)

3 生成音频

输入我们需要生成的文字,即可生成对应的音频文件

3.1 文本输入

In [53]

text_dict = {
    "0": "博士!早上好!",
    "1":"源石被发现之后,人们发掘出一种通过它来施放一系列令物质改变原有性状的技术,这种技术被称为源石技艺,常被俗称为“法术”。源石技艺所运用的能源,一般被认为来自于源石本身。而人是否能施放法术,以及所能施放法术的形式、强度、效果等,通常受到先天具备的素质、后天对源石技艺的学习能力这两方面因素的制约。"
}

In [54]

# 生成 sentence.txt
text_file = os.path.join(exp_dir, "sentence.txt")
with open(text_file, "w", encoding="utf8") as f:
    for k,v in sorted(text_dict.items(), key=lambda x:x[0]):
        f.write(f"{k} {v}\n")

3.2 调训练的模型

In [55]

# 找到最新生成的模型
def find_max_ckpt(model_path):
    max_ckpt = 0
    for filename in os.listdir(model_path):
        if filename.endswith('.pdz'):
            files = filename[:-4]
            a1, a2, it = files.split("_")
            if int(it) > max_ckpt:
                max_ckpt = int(it)
    return max_ckpt

3.2 生成语音

In [56]

# 配置一下参数信息
model_path = os.path.join(output_dir, "checkpoints")
ckpt = find_max_ckpt(model_path)

cmd = f"""
python3 /home/aistudio/PaddleSpeech/paddlespeech/t2s/exps/fastspeech2/../synthesize_e2e.py \
                --am=fastspeech2_mix \
                --am_config=models/fastspeech2_mix_ckpt_1.2.0/default.yaml \
                --am_ckpt={output_dir}/checkpoints/snapshot_iter_{ckpt}.pdz \
                --am_stat=models/fastspeech2_mix_ckpt_1.2.0/speech_stats.npy \
                --voc="hifigan_aishell3" \
                --voc_config=models/hifigan_aishell3_ckpt_0.2.0/default.yaml \
                --voc_ckpt=models/hifigan_aishell3_ckpt_0.2.0/snapshot_iter_2500000.pdz \
                --voc_stat=models/hifigan_aishell3_ckpt_0.2.0/feats_stats.npy \
                --lang=mix \
                --text={text_file} \
                --output_dir={wav_output_dir} \
                --phones_dict={dump_dir}/phone_id_map.txt \
                --speaker_dict={dump_dir}/speaker_id_map.txt \
                --spk_id=0 \
                --ngpu=1
"""

In [ ]

!pip install timer
!pip install opencc==1.1.6

In [ ]

# 由于版本兼容问题,微调训练使用paddlepaddle-gpu==2.3.2,调模型生成语音使用paddlepaddle-gpu==2.6.0
!pip install --user paddlepaddle-gpu==2.6.0

In [ ]

run_cmd(cmd, cwd_path)

3.4 语音展示

In [59]

import IPython.display as ipd

ipd.Audio(os.path.join(wav_output_dir, "0.wav"))
<IPython.lib.display.Audio object>

In [60]

ipd.Audio(os.path.join(wav_output_dir, "1.wav"))
<IPython.lib.display.Audio object>

In [61]

ipd.Audio("/home/aistudio/work/dataset/阿米娅/wav/3星结束行动.wav")
<IPython.lib.display.Audio object>

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1802572.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

Buildroot和Debian文件系统修改方法

本文档主要介绍在没有编译环境的情况下&#xff0c;如何修改buildroot和debian文件系统方法&#xff0c;如在buildroot文件系统中添加文件、修改目录等文件操作&#xff0c;在debian文件系统中&#xff0c;安装软件库、工具、扩大文件系统空间等等操作。 1.Debian文件系统 …

Java | Leetcode Java题解之第137题只出现一次的数字II

题目&#xff1a; 题解&#xff1a; class Solution {public int singleNumber(int[] nums) {int a 0, b 0;for (int num : nums) {b ~a & (b ^ num);a ~b & (a ^ num);}return b;} }

AndroidStudio无法识别连接夜神模拟器

方法一(无法从根本上解决) ①进入夜神模拟器安装路径下的bin路径(安装路径可以带有中文路径) ②打开cmd窗口,输入以下代码(一定要打开模拟器) nox_adb.exe connect 127.0.0.1:62001 方法二(根本上解决) 原因:Android Studio的adb版本与夜神模拟器的adb版本不一致 ①打开And…

【Unity】 HTFramework框架(五十一)代码片段执行器

更新日期&#xff1a;2024年6月8日。 Github源码&#xff1a;[点我获取源码] Gitee源码&#xff1a;[点我获取源码] 索引 Code Snippet Executer 代码片段执行器使用 Code Snippet Executer打开 Code Snippet Executer动态执行&#xff08;代码片段&#xff09;静态执行&#x…

core dump核心转储

检查核心转储是否开启&#xff0c;否则无法生成core文件 ulimit -a 如果为0就需要修改 ulimit -c 10240 写一个会触发core命令的程序 以浮点数运算为例 #include <iostream>int main() {int i 1/0; } 在编译时使用-g选项 运行程序&#xff0c;生成core文件 gdb调试 g…

本地部署GLM-4-9B清华智谱开源大模型方法和对话效果体验

GLM-4-9B是清华大学和智谱AI推出的最新一代预训练模型GLM-4系列中的开源版本。在语义、数学、推理、代码和知识等多方面的数据集测评中&#xff0c;GLM-4-9B及其人类偏好对齐的版本GLM-4-9B-Chat均表现出较高的性能&#xff0c;其通用能力评测结果甚至超越了Llama-3-8B开源大模…

如何解锁植物大战僵尸杂交版v2.0.88所有植物

如何解锁植物大战僵尸杂交版v2.0.88所有植物 前言安装相关软件快速解锁方法修改冒险模式修改挑战模式 前言 经过探索植物大战僵尸杂交版植物解锁和关卡有关&#xff0c;所以通过所有关卡就可以解锁所有植物。 安装相关软件 1.安装植物大战僵尸 2.安装Hex Editor Neo 快速解…

pytorch 加权CE_loss实现(语义分割中的类不平衡使用)

加权CE_loss和BCE_loss稍有不同 1.标签为long类型&#xff0c;BCE标签为float类型 2.当reduction为mean时计算每个像素点的损失的平均&#xff0c;BCE除以像素数得到平均值&#xff0c;CE除以像素对应的权重之和得到平均值。 参数配置torch.nn.CrossEntropyLoss(weightNone,…

【香橙派】Orange Pi AIpro体验——国产AI赋能

文章目录 &#x1f354;开箱&#x1f6f8;烧录镜像⭐启动系统&#x1f388;本机登录&#x1f388;远程登陆 &#x1f386;AI功能体验&#x1f50e;总结 &#x1f354;开箱 可以看到是很精美的开发组件 这里是香橙派官网 http://www.orangepi.cn/ 我们找到下面图片的内容&#…

uc/OS移植到stm32实现三个任务

文章目录 一、使用CubeMX创建工程二、uc/OS移植三、添加代码四、修改代码五、实践结果六、参考文章七、总结 实践内容 学习嵌入式实时操作系统&#xff08;RTOS&#xff09;,以uc/OS为例&#xff0c;将其移植到stm32F103上&#xff0c;构建至少3个任务&#xff08;task&#xf…

python有short类型吗

Python 数字数据类型用于存储数值。 Python 支持三种不同的数值类型&#xff1a;整型&#xff08;int&#xff09;、浮点型&#xff08;float&#xff09;、复数&#xff08;complex&#xff09;。 在其他的编程语言中&#xff0c;比如Java、C这一类的语言中还分有长整型&…

西米支付:刷卡手续费进入高费率时代! 十多家支付机构公布最新收费标准

《非银行支付机构监督管理条例》自5月1日施行以来&#xff0c;越来越多支付机构落实收费透明化。 支付界注意到&#xff0c;日前&#xff0c;拉卡拉、银联商务两家持牌支付公司公布了新的收单业务收费标准。 拉卡拉在其官网公布了最新的“收费项目及收费标准公示”&#xff0…

二叉查找树详解

目录 二叉查找树的定义 二叉查找树的基本操作 查找 插入 建立 删除 二叉树查找树的性质 二叉查找树的定义 二叉查找树是一种特殊的二叉树&#xff0c;又称为排序二叉树、二叉搜索树、二叉排序树。 二叉树的递归定义如下&#xff1a; &#xff08;1&#xff09;要么二…

CorelDraw安装时界面显示不全的解决方案

问题原因&#xff1a;安装包权限 解决方案&#xff1a; 1、安装包解压后&#xff0c;找到Setup文件&#xff0c;复制粘贴到当前文件夹并重命名为Getup后&#xff0c;右击Getup文件&#xff0c;选择“以管理员身份运行” 说明&#xff1a;除了命名Gsetup。还可以命名为其他的…

【Java】Java18的新特性

人不走空 &#x1f308;个人主页&#xff1a;人不走空 &#x1f496;系列专栏&#xff1a;算法专题 ⏰诗词歌赋&#xff1a;斯是陋室&#xff0c;惟吾德馨 目录 &#x1f308;个人主页&#xff1a;人不走空 &#x1f496;系列专栏&#xff1a;算法专题 ⏰诗词歌…

史上最有趣嫁妆:晋公盘的传奇

在遥远的春秋时代&#xff0c;晋国的晋文公为他的女儿用心打造了一件独特的嫁妆——晋公盘。 晋公盘由青铜制成&#xff0c;形状独特&#xff0c;工艺精湛。在晋公盘内底中央&#xff0c;一对精美的浮雕龙盘绕成圆形&#xff0c;盘上饰有鸟、龟、鱼、蛙等多种动物&#xff0c;最…

带你学习Mybatis之逆向工程

逆向工程 可以针对单表自动生成MyBatis执行所需要的代码&#xff0c;包括&#xff1a;Mapper.java&#xff0c;Mapper.xml&#xff0c;实体类&#xff0c;这样可以减少重复代码的编写 <dependency> <groupId>org.mybatis.generator</groupId> …

【数据结构】初识数据结构之复杂度与链表

【数据结构】初识数据结构之复杂度与链表 &#x1f525;个人主页&#xff1a;大白的编程日记 &#x1f525;专栏&#xff1a;C语言学习之路 文章目录 【数据结构】初识数据结构之复杂度与链表前言一.数据结构和算法1.1数据结构1.2算法1.3数据结构和算法的重要性 二.时间与空间…

人工智能对话系统源码 手机版+电脑版二合一 全端支持 前后端分离 带完整的安装代码包以及搭建部署教程

系统概述 该系统采用前后端分离的设计模式&#xff0c;前端负责用户界面展示与交互&#xff0c;后端负责数据处理与业务逻辑实现。前后端通过API接口进行通信&#xff0c;实现数据的实时传输与处理。系统支持全端访问&#xff0c;无论是手机还是电脑&#xff0c;都能获得良好的…

Type-C接口,乱成一锅粥了!

前言 小白第一次接触Type-C接口的时候是2017年的夏天&#xff0c;那时候小白买了小米最新发布的小米5x手机&#xff0c;使用的是相当主流的Type-C接口。 在2017年之前&#xff0c;很多手机还是使用Micro-USB作为手机首选的充电接口。 当同宿舍的小伙伴还在为给手机充电需要分辨…