大模型多轮问答的两种方式

news2024/11/29 6:34:31

前言

大模型的多轮问答难点就是在于如何精确识别用户最新的提问的真实意图,而在常见的使用大模型进行多轮对话方式中,我接触到的只有两种方式

  • 一种是简单地直接使用 userassistant 两个角色将一问一答的会话内容喂给大模型,让它能够结合最新的问题靠自己去理解用户的最新的问题的含义。
  • 另外一种方式是在会话过程中将历史的问题进行维护,再使用另外一个大模型结合最新的问题去理解用户当前的意图。

两种方式都可以,但是在我目前的业务上我目前使用的是后者,因为比较容易实现,效果也不错。

第一种方式

这是使用的是 qwen 的多轮问答 api ,要使用这一种方式,需要维护一个相当长的历史会话记录 messages ,而且要保证 messages 中的 user/assistant 消息交替出现,这是一个必须要遵循的条件,如果是碰到异常,必须要对 messages 中最后的无效对话进行清理。这里就是将理解用户意图和解决用户的问题都混在了一块,对于我要做的业务,回答内容的不确定性太高,而且实现成本也高,需要在会话中加入大量业务代码,所以果断放弃了。

这里的代码主要实现了一个简易地关于烹饪的对话,只有两轮,实现逻辑比较简单,写的比较粗糙,理解意思即可。

def multi_round():
    messages = [{'role': 'system', 'content': '你是一个绝佳的烹饪助手'},
                {'role': 'user', 'content': '如何做西红柿炖牛腩?'}]
    response = Generation.call(model="qwen-turbo",  messages=messages, result_format='message')
    if response.status_code == HTTPStatus.OK:
        print(response)
        messages.append({'role': response.output.choices[0]['message']['role'],
                         'content': response.output.choices[0]['message']['content']})   # 将assistant的回复添加到messages列表中
    else:
        print(response.message)
        messages = messages[:-1]  # 如果响应失败,将最后一条user message从messages列表里删除,确保 user/assistant 消息交替出现
    messages.append({'role': 'user', 'content': '不放糖可以吗?'})  # 将新一轮的user问题添加到messages列表中
    
    response = Generation.call(model="qwen-turbo", messages=messages, result_format='message', )
    if response.status_code == HTTPStatus.OK:
        print(response)
        messages.append({'role': response.output.choices[0]['message']['role'],
                         'content': response.output.choices[0]['message']['content']})  # 将第二轮的assistant的回复添加到messages列表中
    else:
        print(response.message)
        messages = messages[:-1]  # 如果响应失败,将最后一条user message从messages列表里删除,确保 user/assistant 消息交替出现

第二种方式

在我所做地业务中,对于 assistant 的回复不关心,主要关心的是用户的问题,所以我只关注 user 的历史提问,在实现的时候只需要维护一个列表 history,始终将最新的用户提问追加即可,为了保证列表信息的有效性,我始终只维护最后 10 个问题。我这里使用 qwen-max 模型对历史提问进行总结,并且按照我要求的方式进行输出。也就是说这个模型只负责总结历史问题,对于业务问题的回答是其他大模型干的事情,任务分工明确就减少了不确定性。

@app.route('/get_last_question', methods=["POST"])
def get_last_question():
    global user_data
    logging.info("-"*20)
    data = request.get_json()
    if 'question' not in data or not data['question'] or 'userId' not in data or not data['userId']:
        return "无法理解或者无法解决,请重新输入问题"
    question = data['question']
    userId = data['userId']
    try:
        user_data = load_data(config)  # 加载用户数据
        if userId not in user_data:
            user_data[userId] = []
        user_data[userId].append(question)  # 获取 userId 对应的历史对话记录
        user_data[userId] = user_data[userId][-10:]  # 只保留历史上 10 个对话记录
        logging.info(f"正在解析用户 【{userId}】 意图,问题历史是 {user_data[userId]}...\n\n")
        history = user_data[userId]
        history_str = ""
        if len(history)>1:
            history_str = "历史上我依次提问了以下问题:\n"
            for i,h in enumerate(history[:-1]):
                history_str += f"时间 10:06:0{i+1} ,问题是: {h}\n"
        else:
            history_str += "目前暂无用户提问历史记录。"
        messages = [
            {'role': 'system',
             'content': '您是一名善于从历史提问中分析用户的最新意图的助手,请根据提问历史记录,分析并总结用户的最新问题的完整意图。'},
            {'role': 'user',
             'content': f"根据提问历史记录,分析并总结用户的最新问题的完整意图。不要做冗余的解释或者赘述。如果用户提出的问题语义模糊不清无法识别,可以直接返回空字符串。答案的模板必循遵循“【{{我的最新的问题描述}}】”,总结出来的问题还必须要满足下面的要求:\n"
                        f"1、如果用户的问题查询的是“杭州市”或者“杭州”范围的数据一律使用“全市”进行替换,因为业务数据范围默认就是全杭州市的数据,所以无需重复再提起,但是我们不对包含“杭州市”或者”杭州“字符串的单位名称进行任何处理,因为单位名称具有独特的含义。\n"
                        f"2、用户的简短问题或者意图模糊的提问(如‘2024年呢’等)通常是对之前历史问题的追问或者补充,请根据历史问题记录推断出完整的问题。\n"
                        f"例子:\n"
                        f"输入的历史问题列表是:\n "
                        f"时间 2024-6-6 ,问题是:升序统计2023年各项目类型下管线项目计划数和计划投资金额\n "
                        f"我最新的问题是:统计杭州市2023年管线和管廊建设计划的执行率\n"
                        f"经过分析历史问题列表发现最新的问题和前面的问题关系不大,所以直接最后总结出来的问题是 “统计杭州市2023年管线和管廊建设计划的执行率”, 从问题中可以看出要查询杭州市范围的数据,按照要求我们知道默认数据范围就是全杭州市,所以要用”全市“进行替换,所以输出结果为“【统计全市2023年管线和管廊建设计划的执行率】”。\n"
                        f"例子:\n"
                        f"输入的历史问题列表是: \n"
                        f"时间 2024-6-6,问题是:升序统计杭州市2023年各项目类型下管线项目计划数和计划投资金额\n"
                        f"我最新的问题是:2024年呢\n"
                        f"经过分析发现列表中最新的问题和前面的问题关系有联系,所以经过分析最后总结出来的问题是 “升序统计杭州市2024年各项目类型下管线项目计划数和计划投资金额”, 从问题中可以看出要查询杭州市范围的数据,按照要求我们知道默认数据范围就是全杭州市,所以要用”全市“进行替换,所以输出结果为“【升序统计全市2024年各项目类型下管线项目计划数和计划投资金额】”。\n"
                        f"例子:\n"
                        f"输入的历史问题列表是: \n"
                        f"时间 2024-6-6,问题是:升序查询杭州市2023年权属单位是杭州市政府的管线信息\n"
                        f"我最新的问题是,问题是:2024年呢\n"
                        f"经过分析发现列表中最新的问题和前面的问题关系有联系,所以经过分析最后总结出来的问题是 “升序查询杭州市2024年权属单位是杭州市政府的管线信息”, 从问题中可以看出要查询杭州市范围的数据,按照要求我们知道默认数据范围就是全杭州市,所以要用”全市“进行替换,所以输出结果为“【升序查询全市2024年权属单位是杭州市政府的管线信息】”,我们不对包含“杭州市”或者”杭州“字符串的单位名称进行任何处理。\n"
                        f"\n{history_str}\n,现在我的最新的问题是 “{history[-1]}” ,请严格遵守上述要求并总结出用户的最新问题并给出完整的意图,并简要介绍思考过程。"}
        ]
        logging.info(f"总结用户最新意图 prompt :{messages}")
        response = Generation.call(model="qwen-max-0428", messages=messages, result_format='message')
        resp = response.output.choices[0]['message']['content']
        logging.info(f"用户最新意图是:{resp}")
        g = re.search(r"【.*】", resp)
        if g:
            resp = g.group().replace("【", "").replace("】", "")
            save_data(user_data, config)
            return resp
        return ""
    except Exception as e:
        logging.info("提取总结最新的问题过程中报错")
        logging.error(e)
        return ""

那么,我们该如何学习大模型?

作为一名热心肠的互联网老兵,我决定把宝贵的AI知识分享给大家。 至于能学习到多少就看你的学习毅力和能力了 。我已将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

一、大模型全套的学习路线

学习大型人工智能模型,如GPT-3、BERT或任何其他先进的神经网络模型,需要系统的方法和持续的努力。既然要系统的学习大模型,那么学习路线是必不可少的,下面的这份路线能帮助你快速梳理知识,形成自己的体系。

L1级别:AI大模型时代的华丽登场

L2级别:AI大模型API应用开发工程

L3级别:大模型应用架构进阶实践

L4级别:大模型微调与私有化部署

一般掌握到第四个级别,市场上大多数岗位都是可以胜任,但要还不是天花板,天花板级别要求更加严格,对于算法和实战是非常苛刻的。建议普通人掌握到L4级别即可。

以上的AI大模型学习路线,不知道为什么发出来就有点糊,高清版可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

二、640套AI大模型报告合集

这套包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。

img

三、大模型经典PDF籍

随着人工智能技术的飞速发展,AI大模型已经成为了当今科技领域的一大热点。这些大型预训练模型,如GPT-3、BERT、XLNet等,以其强大的语言理解和生成能力,正在改变我们对人工智能的认识。 那以下这些PDF籍就是非常不错的学习资源。

img

四、AI大模型商业化落地方案

img

作为普通人,入局大模型时代需要持续学习和实践,不断提高自己的技能和认知水平,同时也需要有责任感和伦理意识,为人工智能的健康发展贡献力量。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1802256.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

u盘内容无故消失了是什么原因?u盘部分内容无故消失了怎么恢复

在数字化时代,U盘作为便携存储设备,承载着许多重要的数据。然而,有时我们可能会遭遇U盘部分内容无故消失的情况,这无疑给我们的工作和生活带来了不小的困扰。本文将为您解析U盘内容消失的可能原因,并分享几招实用的数据…

[经验] 场效应管是如何发挥作用的 #知识分享#学习方法#职场发展

场效应管是如何发挥作用的 在现代电子技术领域,场效应管(MOSFET)是一种重要的半导体元器件。它的作用非常广泛,例如在集成电路中扮演着关键的角色。在本文中,我们将详细探讨场效应管的作用及其在实际应用中的意义。 简…

[职场] 社保和商业保险有什么区别?可以只买商保不买社保吗? #微信#经验分享#媒体

社保和商业保险有什么区别?可以只买商保不买社保吗? 我们在提到社保和商业保险时,经常会听到这样一句话:“社保是基础,商保是补充。” 为什么会这样说呢?社保和商保有什么区别呢?今天&#xf…

AutoCAD Mechanical机械版专业的计算机辅助设计软件安装包下载安装!

AutoCAD机械版作为一款专业的计算机辅助设计软件,不仅具备卓越的二维绘图功能,更是拥有令人瞩目的3D建模工具,为机械设计师们提供了前所未有的创作空间。 在AutoCAD机械版的3D建模环境中,用户可以借助一系列简洁明了的命令&#…

SMS - 基于阿里云实现手机短信验证码登录(无需备案,非测试)

目录 SMS 环境调试 从阿里云云市场中购买第三方短信服务 调试短信验证码功能 实战开发 封装组件 对外接口 调用演示 SMS 环境调试 从阿里云云市场中购买第三方短信服务 a)进入阿里云首页,然后从云市场中找到 “短信” (一定要从 云…

SpringBoot高手之路-springboot原理篇

配置文件优先级 SpringBoot原理篇-多环境配置

JFinal学习07 控制器——接收数据之getBean()和getModel()

JFinal学习07 控制器——接收数据之getBean()和getModel() 视频来源https://www.bilibili.com/video/BV1Bt411H7J9/?spm_id_from333.337.search-card.all.click 文章目录 JFinal学习07 控制器——接收数据之getBean()和getModel()一、接收数据的类型二、getBean()和getModel()…

Pytorch手把手实作-Generative Adversarial Network (GAN)

文章目录 一、说明二、GAN的介绍三、生成器和鉴别器四、代码实现 一、说明 前言废话免了,会进来看文章内容的只有四种人:1. 只想知道皮毛,GAN在干什么的 2. 想知道细节怎么把GAN训练起来;3. 收藏在收藏夹或是书签当作有看过了&am…

HTTP协议分析实验:通过一次下载任务抓包分析

HTTP协议分析 问:HTTP是干啥用的? 最简单通俗的解释:HTTP 是客户端浏览器或其他程序与Web服务器之间的应用层通信协议。 在Internet上的Web服务器上存放的都是超文本信息,客户机需要通过HTTP协议传输所要访问的超文本信息。 一、…

Adobe XD最新版号查询,如何使用?

Adobe XD是Adobe家推出的基于矢量的原型设计合作工具,被业界视为应对Sketch的“对抗”产品。Adobe XD不同于Sketch的系统限制,灵活性比较高,Windows和Mac都可以使用。自2017年推出以来,Adobe XD版经历了多次更新,这篇文…

【Python报错】已解决SyntaxError: can’t assign to function call

成功解决“SyntaxError: can’t assign to function call”错误的全面指南 在Python编程中,语法错误(SyntaxError)是初学者和经验丰富的开发者都可能遇到的问题。其中,“SyntaxError: can’t assign to function call”这个错误常…

IM即时通信技术

本文原创作者:谷哥的小弟作者博客地址:http://blog.csdn.net/lfdfhl IM,即Instant Messaging,是指即时通讯技术,它允许用户通过互联网实时交换文本、语音、视频、文件等多种形式的信息。这种技术打破了传统通信方式的时…

Spring AOP(实现,动态原理)详解版

Spring AOP 1.什么是AOP?1.1引入AOP依赖1.2编写AOP程序 2.Spring AOP核⼼概念2.1 切点(Pointcut)2.2连接点(Join Point)2.3通知(Advice)2.4 切⾯(Aspect) 3.通知类型3.1顺序3.2切⾯优先级 Order3.3 ⾃定义注解 MyAspect 4. Spring AOP 原理5 动态代理怎么实现5.1 JD…

大学数字媒体艺术设计网页设计试题及答案,分享几个实用搜题和学习工具 #媒体#职场发展

现在读书可不像小时候,以前想要校对试题答案,都得找到对应的纸质版答案查看,而且有的还只有答案,没有解析,无法弄清楚答案的由来。但是现在不一样了,现在我们可以通过搜题软件,寻找试题的答案&a…

性能优化随笔(一)

在软件开发过程中,一般要先实现功能方面的需求,功能方面的需求开发完毕之后,往往会考虑性能方面的优化。在业务发展的初期,性能往往能满足使用的需求,这时性能优化不是必不可少的。随着业务的发展,软件复杂…

MySQL提权之UDF提权

1、前言 最近遇到udf提权,几经周折终于搞懂了。感觉挺有意思的,渗透思路一下子就被打开了。 2、什么是udf提权 udf 全称为user defined function,意思是用户自定义函数。用户可以对数据库所使用的函数进行一个扩展(windows利用…

Vue2工程化

本节目标 工程化开发项目运行流程组件化组件注册自定义创建项目 工程化开发 基于构建工具的环境开发Vue Webpack的缺点 webpack的配置并不简单基础的配置雷同各公司缺乏统一标准 Vue CLI Vue CLI是Vue官方提供的一个全局命令工具帮助我们快速创建标准化的开发环境( 集成了w…

【TB作品】MSP430F5529,单片机,电子秒表,秒表

硬件 MSP430F5529开发板7针0.96寸OLED /* OLED引脚分配 绿色板子DO(SCLK)------P4.3D1(DATA)------P4.0RES-----------P3.7DC------------P8.2CS------------P8.1 */ 程序功能 该程序是一个用C语言编写的,用于msp430f5529微控制器上的简单电子秒表应用。它使用…

2024年如何通过完善的工程化,从0到1手把手建立个人 react 组件库

本文聚焦于快速创建并部署个人的组件库,方便平时开发中将通用的组件抽出,也可用于简历上展示个人的组件成果~ 组件库体验地址:components-library 关于以上内容,你是否好奇如何实现的,对于大多数项目,诸如…