用于认知负荷评估的集成时空深度聚类(ISTDC)

news2025/1/19 14:24:07

Integrated Spatio-Temporal Deep Clustering (ISTDC) for cognitive workload assessment

摘要:

本文提出了一种新型的集成时空深度聚类(ISTDC)模型,用于评估认知负荷。该模型首先利用深度表示学习(DRL)将高维EEG数据转换到低维特征空间,然后应用变分贝叶斯高斯混合模型(VBGMM)进行聚类分析。ISTDC模型通过四个算法实现,包括时间-空间变分自编码器(VAE)和多模态集成,有效地从EEG信号中提取时间与空间的潜在特征。在i-back任务中,所提出的模型在0-back与2-back任务对比中达到了98.0%的最大平均聚类准确率,相较于现有方法有显著提升。此外,多模态方法在工作量评估方面优于单模态模型。

引言:

引言部分定义了认知负荷作为一个多维构造,并讨论了使用主观或生理测量方法来评估操作者的工作量水平。由于基于生理信号的客观测量至关重要,EEG作为最有效的生理测量手段被广泛用于认知应用。然而,传统的基于EEG的特征(如功率谱密度PSD或事件相关电位ERP)并不总能在认知负荷估计中取得满意结果。因此,本文提出了一种新的深度学习方法,通过深度表示学习将EEG数据转换到更易于聚类的低维特征空间。

文章贡献

  • 提出了一个新颖的ISTDC框架,该框架由四个算法组成,后接深度聚类方法,有效利用结合的时间和空间深度潜在特征来分类工作量水平。
  • 在0-back与2-back任务对比中,所提出的模型达到了最高的分类准确率,并且与基于单模态VAE的聚类方法相比,分别提高了15.8%和13.7%的性能。
  • 通过不同种类的比较研究,证明了所提出模型在所有比较中的效率有显著提高。
    这些贡献展示了ISTDC模型在认知负荷评估方面的潜力,特别是在提高聚类准确性和多模态数据处理方面。
    在这里插入图片描述

算法框架

  • 时间-空间特征提取:

    利用变分自编码器(VAE)来提取EEG信号的时间和空间特征。时间特征通过长短期记忆网络(LSTM)模型提取,而空间特征则通过卷积神经网络(CNN)模型提取。

  • 深度表示学习(DRL):

    通过DRL技术,将高维EEG数据映射到低维特征空间,以便于后续的聚类分析。

  • 特征融合:

    将提取的时间和空间特征进行融合,形成一个综合的特征向量,这个向量包含了原始EEG信号的多维度信息。

  • 变分贝叶斯高斯混合模型(VBGMM):

    使用VBGMM作为聚类算法,对融合后的特征向量进行聚类分析,以识别不同的认知负荷水平。

方法部分

介绍了Integrated Spatio-Temporal Deep Clustering (ISTDC)模型的构建和实现方式,包括数据集的选择、实验设计、深度学习模型的架构和认知负荷估计的聚类方法。以下是方法部分的主要内容概述:

  • 数据集和实验分析:

    使用了一个包含26名受试者(9名男性和17名女性)的公开可访问EEG数据集。
    数据集记录了30个EEG电极的信号,采样率为1000 Hz,并进行了1-40 Hz的带通滤波处理。
    应用独立成分分析(ICA)去除眼动和心电等伪迹。

  • 集成时空变分自编码器(IST-VAE)模型:

    介绍了深度表示学习方法(DRL),用于将高维输入数据映射到低维嵌入特征空间。
    利用变分自编码器(VAE)来克服自动编码器(AE)的过拟合问题,通过正则化潜在变量。
    描述了用于构建IST-VAE模型的四个算法,包括编码过程、时间VAE、空间VAE和多模态集成。

  • 认知负荷估计使用变分贝叶斯高斯混合模型(VBGMM):

    详细描述了VBGMM聚类方法,这是一种基于变分推断算法的方法,用于在保留贝叶斯方法优势的同时确定近似后验分布。
    讨论了VBGMM的两个关键参数:先验类型(狄利克雷过程或狄利克雷分布)和权重浓度先验,后者基于先验类型确定每个组件的权重分布。

  • 实验设计:

    描述了i-back任务的实验设计,包括0-back、2-back和3-back任务,以及实验中每个任务的执行流程和持续时间。

  • 模型训练和优化:

    讨论了模型训练过程中使用的不同优化器和学习率,以及如何使用随机搜索方法来调整超参数。

  • 模型评估:

    介绍了用于评估VBGMM聚类性能的三个指标:无监督聚类准确率(Acc)、归一化互信息(NMI)和Rand指数(RI)。

  • 计算复杂性分析:

    对模型的计算复杂性进行了讨论,包括LSTM和CNN模型的时间复杂度,以及VBGMM聚类算法的复杂度。
    在这里插入图片描述
    在这里插入图片描述

结论

本文提出了一种创新的Integrated Spatio-Temporal Deep Clustering (ISTDC)框架,通过融合电生理信号的时空特征,并应用变分贝叶斯高斯混合模型(VBGMM)进行聚类分析,有效提升了认知负荷评估的准确性。实验结果表明,该模型在0-back与2-back任务对比中实现了98.0%的高平均聚类准确率,并在个别受试者上达到了99.2%的准确率。此外,模型在不同数据集上展现出良好的泛化能力,相较于传统方法和其他深度学习模型,显示出显著的性能优势。未来的工作将探索集成更多生理信号,如近红外光谱(NIRS),以进一步提高模型的评估性能。

应用点

聚类在图像语义分割中的应用是将图像的每个像素或区域根据其特征自动划分到不同的类别中,从而实现对图像结构的理解和描述。通过使用不同的聚类算法,如K-means、谱聚类或基于密度的DBSCAN,可以从原始像素值或通过深度学习模型提取的高级特征中学习数据的内在结构。这些算法将图像的像素分组,以便每个组内的像素在视觉上或在特征空间中是相似的,而组与组之间则有明显的差异。聚类结果可以用于生成更加精细和准确的分割,尤其是在处理复杂场景或缺少大量标注数据的情况中。此外,聚类技术可以与监督学习方法结合使用,形成半监督学习框架,以提高分割精度并减少对大量标注数据的依赖。最终,聚类在图像语义分割中的应用有助于自动化和改善计算机视觉系统在场景理解、对象识别和自动驾驶等领域的性能。

聚类在语义语义分割中的应用

  • 特征提取:

    首先,需要从图像中提取有用的特征。这些特征可以是像素级的颜色、纹理、位置信息,或者是通过深度学习模型(如卷积神经网络CNN)提取的高级特征。

  • 无监督学习:

    聚类是一种无监督学习方法,可以在没有标签指导的情况下对数据进行分组。在图像语义分割中,可以将图像的每个像素或小区域视为数据点,并应用聚类算法来识别图像中不同的区域或对象。

  • 选择聚类算法:

    根据任务的具体需求选择合适的聚类算法,如K-means、谱聚类、层次聚类、基于密度的聚类(如DBSCAN)或变分贝叶斯聚类等。

  • 应用聚类算法:

    将聚类算法应用于提取的特征上,以将图像分割成多个区域或对象。每个聚类代表图像中的一个语义上一致的区域。

  • 后处理:

    聚类结果可能需要后处理步骤来优化分割效果,例如通过形态学操作来消除小的、孤立的区域,或通过条件随机场(CRF)来细化边界。

  • 评估:

    使用像素准确率、交并比(IoU)、平均精度等指标来评估聚类结果的质量。

  • 集成学习:

    在某些情况下,可以结合多个聚类模型的输出,通过集成学习方法来提高分割的准确性和鲁棒性。

  • 半监督学习:

    如果有少量的标注数据可用,可以结合无监督聚类和监督学习,使用半监督方法来提高分割性能。

  • 多尺度聚类:

    在不同尺度上应用聚类算法,可以帮助识别不同大小的对象,提高分割的准确性。

  • 多模态特征融合:

    如果有多种类型的数据可用(例如,彩色图像、深度图像、红外图像),可以融合这些数据的特征来进行更准确的聚类和分割。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1801869.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

css3 都有哪些新属性

1. css3 都有哪些新属性 1.1. 圆角边框 (border-radius)1.2. 盒子阴影 (box-shadow)1.3. 文本阴影 (text-shadow)1.4. 响应式设计相关属性1.5. 渐变背景 (gradient backgrounds)1.6. 透明度 (opacity 和 rgba/hsla)1.7. 多列布局 (column-count, column-gap, etc.)1.8. 变换 (t…

设置电脑定时关机

1.使用快捷键winR 打开运行界面 2.输入cmd ,点击确认,打开命令行窗口,输入 shutdown -s -t 100,回车执行命令,自动关机设置成功 shutdown: 这是主命令,用于执行关闭或重启操作。-s: 这个参数用于指定执行关…

超详解——识别None——小白篇

目录 1. 内建类型的布尔值 2. 对象身份的比较 3. 对象类型比较 4. 类型工厂函数 5. Python不支持的类型 总结: 1. 内建类型的布尔值 在Python中,布尔值的计算遵循如下规则: None、False、空序列(如空列表 [],空…

【启明智显分享】基于工业级芯片Model3A的7寸彩色触摸屏应用于智慧电子桌牌方案

一场大型会议的布置,往往少不了制作安放参会人物的桌牌。制作、打印、裁剪,若有临时参与人员变更,会务方免不了手忙脚乱更新桌牌。由此,智能电子桌牌应运而生,工作人员通过系统操作更新桌牌信息,解决了传统…

第一个小爬虫_爬取 股票数据

前言 爬取 雪球网的股票数据 [环境使用]:python 3.12 解释器pycharm 编辑器 【模块使用】:import requests -->数据请求模块 要安装 命令 pip install requestsimport csv -->将数据保存到CSV表格中import pandas -->也可以将数据保…

react的自定义组件

// 自定义组件(首字母必须大写) function Button() {return <button>click me</button>; } const Button1()>{return <button>click me1</button>; }// 使用组件 function App() {return (<div className"App">{/* // 自闭和引用自…

【全部更新完毕】2024全国大学生数据统计与分析竞赛B题思路代码文章教学数学建模-电信银行卡诈骗的数据分析

电信银行卡诈骗的数据分析 摘要 电信银行卡诈骗是当前社会中严重的犯罪问题&#xff0c;分析电信银行卡交易数据&#xff0c;找出高风险交易特征&#xff0c;建立预测模型&#xff0c;将有助于公安部门和金融机构更好地防范诈骗行为&#xff0c;保障用户的财产安全。 针对问…

Golang | Leetcode Golang题解之第131题分割回文串

题目&#xff1a; 题解&#xff1a; func partition(s string) (ans [][]string) {n : len(s)f : make([][]int8, n)for i : range f {f[i] make([]int8, n)}// 0 表示尚未搜索&#xff0c;1 表示是回文串&#xff0c;-1 表示不是回文串var isPalindrome func(i, j int) int8…

【Python】常见的第三方库及实例

各位大佬好 &#xff0c;这里是阿川的博客 &#xff0c; 祝您变得更强 个人主页&#xff1a;在线OJ的阿川 大佬的支持和鼓励&#xff0c;将是我成长路上最大的动力 阿川水平有限&#xff0c;如有错误&#xff0c;欢迎大佬指正 库介绍 Python是通过模块来体现库&#xff0…

底板外设倒灌到处理器分析

在嵌入式系统中&#xff0c;底板外设通常与处理器通过各种接口&#xff08;如UART、SPI、I2C、GPIO等&#xff09;进行连接。这些外设可能包括传感器、执行器、存储器、通信模块等。倒灌是指当外设向处理器提供的信号电平超出了处理器能够接受的范围&#xff0c;导致处理器无法…

让 AI 写高考作文丨10 款大模型 “交卷”,实力水平如何?

文章部分素材来源 | CSDN&#xff08;ID&#xff1a;CSDNnews&#xff09; 前言 在科技日新月异的今天&#xff0c;人工智能&#xff08;AI&#xff09;已不再是遥不可及的未来科技&#xff0c;而是逐渐融入我们日常生活的实用工具。从智能语音助手到自动驾驶汽车&#xff0c…

Redis 实现持久化

Redis ⽀持 RDB ( 定期备份 ) 和 AOF ( 实时备份 ) 和 混合持久化 (结合RDB 和 AOF 的特点) 持久化机制&#xff0c;持久化功能有效地避免因进程退出造成数据丢失问题&#xff0c; 当下次重启时利⽤之前持久化的⽂件即可实现数据恢复。 RDB&#xff08;Redis DataBase&#xff…

Python深度学习基于Tensorflow(16)基于Tensorflow的对话实例

文章目录 基础数据清洗数据生成词汇表定义分词器并制作数据集构建Transformer模型并训练模型推理 Tensorflow 的核心就是注意力机制&#xff0c;在之前详细的介绍过&#xff0c;具体可以看这个&#xff1a;Python深度学习基于Tensorflow&#xff08;9&#xff09;注意力机制_te…

【传知代码】Noise2Noise图像去噪(论文复现)

前言&#xff1a;在数字时代&#xff0c;图像已成为我们记录生活、传达信息、探索世界的重要媒介。然而&#xff0c;随着摄影技术的飞速发展&#xff0c;图像噪声——这一影响图像质量的顽疾&#xff0c;始终困扰着我们。Noise2Noise图像去噪技术为我们提供了一种全新的解决方案…

【设计模式】结构型-装饰器模式

在代码的海洋深处迷离&#xff0c;藏匿着一片神奇之地。那里有细腻的线条交错&#xff0c;是装饰器的奇妙艺术。 文章目录 一、登录的困境二、装饰器模式三、装饰器模式的核心组成部分四、运用装饰器模式五、装饰器模式的应用场景六、小结推荐阅读 一、登录的困境 假设我们有…

【经验分享】搭建跨境电商那个独立站必备的功能模块以及实现

搭建跨境电商独立站时&#xff0c;需要确保网站具备一系列关键的功能板块&#xff0c;以提供用户友好的购物体验并确保业务的顺利进行。以下是这些功能板块的详细归纳&#xff1a; 注册登录与身份验证&#xff1a; 用户注册与登录&#xff1a;允许用户创建账户&#xff0c;通过…

CST纳米光学 --- LSPR局部等离子激元共振,消光截面ECS,法诺共振

这期我们用自带的Drude散射粒子&#xff0c;计算消光截面。 查看模型&#xff0c;内核是Silica二氧化硅&#xff0c;正常的介质材料&#xff0c;半径是38纳米&#xff1a; 外围是Drude模型的金属材料包裹&#xff0c;半径48纳米&#xff0c;该材料的参数可由宏Materials->Cr…

洁净室气流流型分类及气流流型可视化验证

洁净室气流 流型的分类 洁净室是空气悬浮粒子浓度受控的房间&#xff0c;其建造和使用方式可最大限度减少房间进入的、产生的和滞留的粒子。房间内的温度、湿度、压力等其他相关参数均按要求受控&#xff08;ISO14644-6&#xff09;。 #深度好文计划# 一.洁净室的四大技术要素…

招募来袭 | 与热爱技术的谷歌开发者一起创造精彩

写在前面 技术的进步在不断推动着世界发展。从 Android、Flutter 等产品的稳步更新迭代&#xff0c;到秉承着负责任的态度对 AI 进行探索&#xff0c;我们通过每一次的技术跃进&#xff0c;帮助大家打开新的视野&#xff0c;激发更多的灵感&#xff0c;将我们的工具和平台打造成…

线控转向 0 -- 线控转向介绍和专栏规划

一、线控转向介绍 高阶自动驾驶核心部件&#xff1a;英创汇智线控转向解决方案 _北京英创汇智科技有限公司 (trinova-tech.com) 线控转向的系统组成详细介绍大家可以看上面这个链接&#xff1b;我这里也只从里面截取一些图片&#xff0c;简单说明。 1、结构组成 线控转向分为…