数据挖掘--分类

news2025/1/20 16:21:23

数据挖掘--引论

数据挖掘--认识数据

数据挖掘--数据预处理

数据挖掘--数据仓库与联机分析处理

数据挖掘--挖掘频繁模式、关联和相关性:基本概念和方法

数据挖掘--分类

数据挖掘--聚类分析:基本概念和方法


基本概念

决策树归纳

决策树:决策树是一种类似流程图的树结构,其中每个内部结点(非树叶节点)表示在一个属性上的测试,每一个分枝代表该测试的一个输出,而每个树叶节点存放一个类标号,树的最顶层及节点是根节点

属性选择

信息熵

p为概率

先计算总的信息熵=-((p(是)log2(p(是))+p(否)log2(p(否))

属性1种类1熵=-(p(种类1是)log2(种类1是)+p(种类1否)log2(种类1否))

属性1增益=总信息熵-p(种类1)属性1种类1熵-p(种类2)属性1种类2熵

取最大的

信息增益

基尼指数

属性1种类1权重(1-(是)^2-(否)^2)+ 属性1种类2权重(1-(是)^2-(否)^2)取最小的

贝叶斯分类方法

预测类隶属关系的概率例如:一个给定的元组属于另一个特定类的概率

贝叶斯定理

朴素贝叶斯

首先确定类别,不同类别的概率

列出每个类别中各个属性的概率

p(假设某个类别1)p(属性1|某个类别1)p(属性2|某个类别1)

p(假设某个类别2)p(属性1|某个类别2)p(属性2|某个类别2)

分别比较两个的概率,那个高就是哪个类别

ROC曲线

TP(真正例)(True Positive)、FP(假正例)、TN(真负例)(True Negative)、FN(假负例)

TPR=(真正例)/(真正例+假负例)(实际为真的总数)

FPR=假正例

AdaBoost

AdaBoost是一种流行的提升算法,创建分类器的组合,每个给出一个加权投票(评委打分,不由一个人的分数决定,专家和观众占不同的比例,最算出来的才是最终分数)

流程:

1.赋予每个训练元组相同的权重1/d

2.有放回的抽样,形成一个训练集Di

3.把这个训练集拿去训练,训练出分类器Mi

4.使用Di作为检验集,看Mi的错误率error

5.错误率大于0.5就需要重新抽样形成Di,重复步骤

6.找到一个正确的,更新权重(1-error)error

7.直到所有正确的分类元组被找到,规范每个元组权重

高级方法

向后传播分类

后向传播:

1后向传播是一种神经网络学习算法

2神经网络是一组连接/输出单元,每个连接都有一个权重

多层前馈神经网络

1后向传播在多层前馈神经网络上学习

2神经网络由一个输入层和一个输出层,一个或多个隐藏层和一个输出层组成

3.有几个输出单元就有几层神经网络

4.给定足够多的训练样本,多层前馈神经网络可以逼近任何函数,也就是可以去模拟任何问题

5.网络是前馈的,权重不会回送到输入单位

6.网络是全连接的

向后传播

支持向量机

无论在什么纬度,存在一个线性或者非线性的线或者平面可以去分开两个数据集

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1801606.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

从0开始学人工智能测试节选:Spark -- 结构化数据领域中测试人员的万金油技术(四)

上一章节我们了解了 shuffle 相关的概念和原理后其实可以发现一个问题,那就是 shuffle 比较容易造成数据倾斜的情况。 例如上一节我们看到的图,在这批数据中,hello 这个单词的行占据了绝大部分,当我们执行 groupByKey 的时候触发了…

关于怎么用Cubemx生成的USBHID设备实现读取一体的鼠标键盘设备(改进版)

主要最近做了一个要用STM32实现读取鼠标键盘一体的那种USB设备,STM32的界面上要和电脑一样的能通过这个USB接口实现鼠标移动,键盘的按键。然后我就很自然的去参考了正点原子的例程,可是找了一圈,发现正点原子好像用的库函数&#…

Docker的资源限制

文章目录 一、什么是资源限制1、Docker的资源限制2、内核支持Linux功能3、OOM异常4、调整/设置进程OOM评分和优先级4.1、/proc/PID/oom_score_adj4.2、/proc/PID/oom_adj4.3、/proc/PID/oom_score 二、容器的内存限制1、实现原理2、命令格式及指令参数2.1、命令格式2.2、指令参…

如何在 iPhone 上恢复已删除的短信

本文介绍如何检索已删除的短信和 iMessage 以及恢复丢失的消息。说明适用于 iOS 17 及更高版本。 如何在 iOS 17及更高版本中恢复文本 恢复已删除短信的最简单方法是使用 iOS 17。从删除短信到恢复它有 30 到 40 天的时间。 在“信息”的对话屏幕中,选择“过滤器”…

重塑楼宇管理:智慧管控可视化开启高效新篇章

借助图扑智慧楼宇管控可视化技术,实现实时监控与智能化管理,快速响应潜在问题,确保楼宇安全、节能和高效运行。

Qt/C++音视频开发76-获取本地有哪些摄像头名称/ffmpeg内置函数方式

一、前言 上一篇文章是写的用Qt的内置函数方式获取本地摄像头名称集合,但是有几个缺点,比如要求Qt5,或者至少要求安装了多媒体组件multimedia,如果没有安装呢,或者安装的是个空的呢,比如很多嵌入式板子&am…

[图解]建模相关的基础知识-05

1 00:00:01,510 --> 00:00:03,900 练习,我们就出这一道就行了 2 00:00:04,230 --> 00:00:07,210 这些都是像数理逻辑 3 00:00:08,140 --> 00:00:10,570 包括信息专业的 4 00:00:11,350 --> 00:00:12,900 包括文科的 5 00:00:12,910 --> 00:00:14…

论文高级图表绘制(Python语言,局部放大图)

本文将通过一个具体的示例,展示如何使用Python语言和Matplotlib库来绘制高级图表,包括局部放大图的制作。适用于多条曲线绘制在同一个图表中,但由于数据量过大,导致曲线的细节看不清,需要对细节进行局部放大。如下图: 环境准备 首先,确保你的Python环境中已经安装了以…

mqtt-emqx:keepAlive机制测试

mqtt keepAlive原理详见【https://www.emqx.com/zh/blog/mqtt-keep-alive】 # 下面开始写测试代码 【pom.xml】 <dependency><groupId>org.springframework.boot</groupId><artifactId>spring-boot-starter-web</artifactId><version>2…

数据结构(C语言)之对归并排序的介绍与理解

目录 一归并排序介绍&#xff1a; 二归并排序递归版本&#xff1a; 2.1递归思路&#xff1a; 2.2递归代码实现&#xff1a; 三归并排序非递归版本&#xff1a; 3.1非递归思路&#xff1a; 3.2非递归代码实现&#xff1a; 四归并排序性能分析&#xff1a; 欢迎大佬&#…

day40--Redis(二)实战篇

实战篇Redis 开篇导读 亲爱的小伙伴们大家好&#xff0c;马上咱们就开始实战篇的内容了&#xff0c;相信通过本章的学习&#xff0c;小伙伴们就能理解各种redis的使用啦&#xff0c;接下来咱们来一起看看实战篇我们要学习一些什么样的内容 短信登录 这一块我们会使用redis共…

碳素钢化学成分分析 螺纹钢材质鉴定 钢材维氏硬度检测

碳素钢的品种主要有圆钢、扁钢、方钢等。经冷、热加工后钢材的表面不得有裂缝、结疤、夹杂、折叠和发纹等缺陷。尺寸和允许公差必须符合相应品种国家标准的要求。 具体分类、按化学成分分类 &#xff1a; 碳素钢按化学成分&#xff08;即以含碳量&#xff09;可分为低碳钢、中…

问题:军保卡不允许开立附属卡,不能开展境外交易,不开通云闪付工功能() #其他#经验分享

问题&#xff1a;军保卡不允许开立附属卡&#xff0c;不能开展境外交易&#xff0c;不开通云闪付工功能&#xff08;&#xff09; A&#xff0e;A&#xff1a;正确 B&#xff0e;B&#xff1a;错误 参考答案如图所示

在线渲染3d怎么用?3d快速渲染步骤设置

在线渲染3D模型是一种高效的技术&#xff0c;它允许艺术家和设计师通过互联网访问远程服务器的强大计算能力&#xff0c;从而加速渲染过程。无论是复杂的场景还是高质量的视觉效果&#xff0c;在线渲染服务都能帮助您节省宝贵的时间。 在线渲染3D一般选择的是&#xff1a;云渲染…

React的useState的基础使用

import {useState} from react // 1.调用useState添加状态变量 // count 是新增的状态变量 // setCount 修改状态变量的方法 // 2.添加点击事件回调 // userState实现计数实例import {useState} from react// 使用组件 function App() {// 1.调用useState添加状态变量// coun…

Python下载库

注&#xff1a;本文一律使用windows讲解。 一、使用cmd下载 先用快捷键win R打开"运行"窗口&#xff0c;如下图。 在输入框中输入cmd并按回车Enter或点确定键&#xff0c;随后会出现这个画面&#xff1a; 输入pip install 你想下载的库名&#xff0c;并按回车&…

使用MATLAB的BP神经网络进行数据分类任务(简单版)

BP神经网络&#xff0c;即反向传播&#xff08;Backpropagation&#xff09;神经网络&#xff0c;是一种多层前馈神经网络&#xff0c;它通过反向传播算法来更新网络权重。这种网络结构特别适合于分类和回归任务。 MATLAB环境设置 在开始之前&#xff0c;请确保MATLAB环境已经…

【设计模式深度剖析】【5】【行为型】【迭代器模式】

&#x1f448;️上一篇:策略模式 设计模式-专栏&#x1f448;️ 文章目录 迭代器模式定义英文原话直译如何理解呢&#xff1f; 迭代器模式的角色1. Iterator&#xff08;迭代器&#xff09;2. ConcreteIterator&#xff08;具体迭代器&#xff09;3. Aggregate&#xff08;聚…

【Git】如何不管本地文件,强制git pull

要在 Git 中强制执行 git pull 操作&#xff0c;忽略本地文件的更改&#xff0c;可以按照以下步骤操作&#xff1a; 保存当前工作状态&#xff1a;如果你有未提交的更改&#xff0c;可以使用 git stash 将这些更改存储起来。 git stash强制拉取最新代码&#xff1a;使用 git re…

物联网学习小记

https://www.cnblogs.com/senior-engineer/p/10045658.html GOSP: 提供类似Qt的API接口&#xff0c;仅需要几百KB的硬件资源&#xff08;比Qt小的多&#xff09;&#xff0c;能运行在Qt不支持的低配置硬件上&#xff08;对Qt生态形成补充&#xff09;&#xff0c;适用于嵌入式…