线性代数|机器学习-P9向量和矩阵范数

news2024/11/16 1:26:56

文章目录

  • 1. 向量范数
  • 2. 对称矩阵S的v范数
  • 3. 最小二乘法
  • 4. 矩阵范数

1. 向量范数

范数存在的意义是为了实现比较距离,比如,在一维实数集合中,我们随便取两个点4和9,我们知道9比4大,但是到了二维实数空间中,取两点A(1,0),B(3,4),这时候我们就没办法比较它们之间的大小了,因为它们不是可以比较的实数,于是我们引入了范数这个概念,把我们的A,B两个点变成 ∣ ∣ A ∣ ∣ = 0 2 + 1 2 = 1 , ∣ ∣ B ∣ ∣ = 3 2 + 4 2 = 5 ||A||=\sqrt{0^2+1^2}=1,||B||=\sqrt{3^2+4^2}=5 ∣∣A∣∣=02+12 =1,∣∣B∣∣=32+42 =5,这样我们就可以比较这两个点了,范数它其实是一个函数,它把不能比较的向量转换成可以比较的实数

  • 向量的0-范数:非0元素个数
    ∣ ∣ X ∣ ∣ 1 = ∑ i = 1 n ∣ x i ∣ 0 \begin{equation} ||X||_1=\sum_{i=1}^n|x_i|^0 \end{equation} ∣∣X1=i=1nxi0

  • 向量的1-范数:各元素的绝对值之和
    ∣ ∣ X ∣ ∣ 1 = ∑ i = 1 n ∣ x i ∣ \begin{equation} ||X||_1=\sum_{i=1}^n|x_i| \end{equation} ∣∣X1=i=1nxi

  • 向量的2-范数:解决机器学习中的过拟合问题
    ∣ ∣ X ∣ ∣ 2 = ( ∑ i = 1 n x i 2 ) 1 2 \begin{equation} ||X||_2=(\sum_{i=1}^nx_i^2)^{\frac{1}{2}} \end{equation} ∣∣X2=(i=1nxi2)21

  • 向量的p-范数: 每个元素p次方和再p次方跟
    ∣ ∣ X ∣ ∣ p = ( ∑ i = 1 n x i p ) 1 p , p ≥ 1 \begin{equation} ||X||_p=(\sum_{i=1}^nx_i^p)^{\frac{1}{p}},p\geq 1 \end{equation} ∣∣Xp=(i=1nxip)p1,p1

  • 向量的 + ∞ + \infty +-范数: 所有向量元素绝对值中的最大值
    ∣ ∣ X ∣ ∣ + ∞ = max ⁡ i ∣ x i ∣ \begin{equation} ||X||_{+ \infty}=\max \limits_{i}|x_i| \end{equation} ∣∣X+=imaxxi

  • 向量的 − ∞ - \infty -范数: 所有向量元素绝对值中的最小值
    ∣ ∣ X ∣ ∣ + ∞ = min ⁡ i ∣ x i ∣ \begin{equation} ||X||_{+ \infty}=\min \limits_{i}|x_i| \end{equation} ∣∣X+=iminxi

  • 我们假设在二维平面上,我们就三个范数进行图形形象表达:
    在这里插入图片描述
    在这里插入图片描述

  • 小结,随着范数越大,图形由原来的菱形膨胀到了正方形,这个正方形就是极限了。这个思路真神奇!!!

2. 对称矩阵S的v范数

假设我们有一个矩阵S和一个列向量v,可得到如下方程
∣ ∣ v ∣ ∣ S = v T S v \begin{equation} ||v||_S=\sqrt{v^TSv} \end{equation} ∣∣vS=vTSv

  • ∣ ∣ v ∣ ∣ S ≤ 1 ||v||_S\leq1 ∣∣vS1,当矩阵S是单位矩阵的时候,那么我们就得到了 L 2 L_2 L2二范数,得到椭圆方程
    S = [ 2 0 0 3 ] , v = [ x y ] → [ x y ] [ 2 0 0 3 ] [ x y ] = 1 → x 2 1 2 + y 2 1 3 = 1 \begin{equation} S=\begin{bmatrix}2&0\\\\0&3\end{bmatrix},v=\begin{bmatrix}x\\\\y\end{bmatrix}\rightarrow \begin{bmatrix}x&y\end{bmatrix}\begin{bmatrix}2&0\\\\0&3\end{bmatrix}\begin{bmatrix}x\\\\y\end{bmatrix}=1\rightarrow \frac{x^2}{\frac{1}{2}}+\frac{y^2}{\frac{1}{3}}=1 \end{equation} S= 2003 ,v= xy [xy] 2003 xy =121x2+31y2=1

3. 最小二乘法

我们知道在我们得到很多点的情况下,需要拟合直线能更好的拟合所有点。
y = arg ⁡ m i n ( A x − b ) 2 \begin{equation} y=\arg \limits_{min}(Ax-b)^2 \end{equation} y=minarg(Axb)2

  • 我们定义需要拟合的直线方程如下:
    c 1 x + c 2 y = b \begin{equation} c_1x+c_2y=b \end{equation} c1x+c2y=b
  • 那么这个直线的最小二乘值为: z = x 2 + y 2 z=x^2+y^2 z=x2+y2,那么最小二乘的意义就是要在直线上找到一点,使得这个点距离原点的距离最短,那么我们就以原点作为中心画圆,当圆与直线相切的时候,这个距离就是最短的,就是我们要找的点。这个点满足L2范数最小;当我们用一个以原点为中心不断扩大菱形的时候,我们发现,目前以y轴上的与直线的交点为最先相交的点,这个就是L1范数最小值。如图所示
  • 在这里插入图片描述

4. 矩阵范数

具体定义请看如下链接:引用别人的笔记-矩阵范数
1-范数:列和范数,即所有矩阵列向量绝对值之和的最大值
2-范数:谱范数,即A’A矩阵的最大特征值的开平方
无穷范数:行和范数,即所有矩阵行向量绝对值之和的最大值
F-范数:Frobenius范数,即矩阵元素绝对值的平方和再开平方
核范数:矩阵A的奇异值之和,貌似很重要,但不太会,后续研究吧

  • 矩阵2范数
    ∣ ∣ A ∣ ∣ 2 = max ⁡ ∣ ∣ A x ∣ ∣ 2 ∣ ∣ x ∣ ∣ 2 , \begin{equation} ||A||_2=\max\frac{||Ax||_2}{||x||_2}, \end{equation} ∣∣A2=max∣∣x2∣∣Ax2,
  • 代入可得 A v = σ u Av=\sigma u Av=σu
    ∣ ∣ A ∣ ∣ 2 = max ⁡ ∣ ∣ A v ∣ ∣ 2 ∣ ∣ v ∣ ∣ 2 = max ⁡ ∣ ∣ σ u ∣ ∣ 2 ∣ ∣ v ∣ ∣ 2 = max ⁡ ∣ ∣ σ u ∣ ∣ \begin{equation} ||A||_2=\max\frac{||Av||_2}{||v||_2}=\max\frac{||\sigma u||_2}{||v||_2}=\max ||\sigma u|| \end{equation} ∣∣A2=max∣∣v2∣∣Av2=max∣∣v2∣∣σu2=max∣∣σu∣∣
  • 以前证明过向量乘以正交矩阵后范数大小不变, ∣ ∣ σ u ∣ ∣ = ∣ ∣ σ ∣ ∣ ||\sigma u||=||\sigma|| ∣∣σu∣∣=∣∣σ∣∣,最大的 σ \sigma σ σ 1 \sigma_1 σ1
    ∣ ∣ A ∣ ∣ 2 = max ⁡ ∣ ∣ A v ∣ ∣ 2 ∣ ∣ v ∣ ∣ 2 = max ⁡ ∣ ∣ σ u ∣ ∣ 2 ∣ ∣ v ∣ ∣ 2 = max ⁡ ∣ ∣ σ u ∣ ∣ = σ 1 \begin{equation} ||A||_2=\max\frac{||Av||_2}{||v||_2}=\max\frac{||\sigma u||_2}{||v||_2}=\max ||\sigma u||=\sigma_1 \end{equation} ∣∣A2=max∣∣v2∣∣Av2=max∣∣v2∣∣σu2=max∣∣σu∣∣=σ1
  • 综上所述可得:
    ∣ ∣ A ∣ ∣ 2 = max ⁡ ∣ ∣ A x ∣ ∣ 2 ∣ ∣ x ∣ ∣ 2 = σ 1 \begin{equation} ||A||_2=\max\frac{||Ax||_2}{||x||_2}=\sigma_1 \end{equation} ∣∣A2=max∣∣x2∣∣Ax2=σ1

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1800913.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

认识Spring 中的BeanPostProcessor

关于BeanPostProcessor和BeanFactoryPostProcessors,将分2篇文章来写,这篇文章是对Spring 中BeanPostProcessor进行了总结 先看下大模型对这个类的介绍,随后再看下这两个类的示例,最后看下这两个类的实现。 这两个类从名字看都很类…

堆盘子00

题目链接 堆盘子 题目描述 注意点 SetOfStacks应该由多个栈组成,并且在前一个栈填满时新建一个栈 解答思路 将多个栈存储到一个List中,当入栈时,如果List中最后一个栈容量已经达到cap,则需要新建一个栈,将元素推到…

压缩视频在线压缩网站,压缩视频在线压缩工具软件

在数字化时代,视频成为了人们记录和分享生活的重要载体。然而,视频文件一般都非常大,这不仅占据了大量的存储空间,也给视频的传输和分享带来了不便。因此,压缩视频成为了许多人必须掌握的技能。本文将详细介绍如何压缩…

Golang | Leetcode Golang题解之第138题随机链表的复制

题目: 题解: func copyRandomList(head *Node) *Node {if head nil {return nil}for node : head; node ! nil; node node.Next.Next {node.Next &Node{Val: node.Val, Next: node.Next}}for node : head; node ! nil; node node.Next.Next {if…

【一百零九】【算法分析与设计】树状数组求解前缀最大值,673. 最长递增子序列的个数,树状数组求前缀区间最大值

树状数组求解前缀最大值 树状数组可以求解和前缀区间有关的问题,例如前缀和,前缀区间最值. 可以利用 l o g n log_n logn​的时间复杂度快速查找前缀信息. 利用树状数组查询前缀区间中最大值问题. 树状数组下标1位置存储arr数组下标1位置的最大值. 树状数组2位置存储arr数组1,…

树的重心-java

主要通过深度优先搜索来完成树的重心,其中关于树的重心的定义可以结合文字多加理解。 文章目录 前言☀ 一、树的重心☀ 二、算法思路☀ 1.图用邻接表存储 2.图的遍历 3.算法思路 二、代码如下☀ 1.代码如下: 2.读入数据 3,代码运行结果 总结 前言☀ 主…

《PyTorch 实战宝典》重磅发布!

Pytorch 是目前常用的深度学习框架之一,比起 TF 的框架环境配置不兼容,和 Keras 由于高度封装造成的不灵活,PyTorch 无论是在学术圈还是工业界,都相当占优势。 不夸张地说,掌握了 PyTorch ,就相当于走上了…

Cloudpods 强大的多云管理平台部署

简介 Cloudpods 是一款简单、可靠的企业IaaS资源管理软件。帮助未云化企业全面云化IDC物理资源,提升企业IT管理效率。 Cloudpods 帮助客户在一个地方管理所有云计算资源。统一管理异构IT基础设施资源,极大简化多云架构复杂度和难度,帮助企业…

[ue5]建模场景学习笔记(5)——必修内容可交互的地形,交互沙(2)

1需求分析: 继续制作可交互沙子内容,前面我们已经让角色在指定区域留下痕迹,那么能否让区域移动起来,这样才能逐步满足角色走到哪里都能产生交互痕迹,满足更大的地图。 2.操作实现: 1.首先建立角色能产生…

12、SpringBoot 源码分析 - 自动配置深度分析五

SpringBoot 源码分析 - 自动配置深度分析五 refresh和自动配置大致流程OnClassCondition的createOutcomesResolver创建结果解析器StandardOutcomesResolver的resolveOutcomes解析结果StandardOutcomesResolver的getOutcomeClassNameFilter的MISSING判断是否没有 ThreadedOutcom…

【YOLOv5/v7改进系列】改进池化层为SPP、SPPF、SPPCSPC

一、导言 池化层(Pooling Layer)是卷积神经网络(Convolutional Neural Networks, CNNs)中的一个重要组成部分,主要用于减少输入数据的空间尺寸(例如,图像的宽度和高度),…

3D打印随形透气钢:技术革新引领模具制造新潮流

在模具制造领域,透气钢一直扮演着重要角色,它能够有效解决模具困气问题,提高注塑成型的效率和质量。然而,传统的透气钢制造方法受限于工艺和材料,难以满足复杂模具的需求。随着3D打印技术的飞速发展,3D打印…

kettle从入门到精通 第六十四课 ETL之kettle kettle中执行SQL脚本步骤,使用需当心

想真正学习或者提升自己的ETL领域知识的朋友欢迎进群,一起学习,共同进步。文章底部关注我,公众号后台加我微信入群,备注kettle。 1、群里有不定时会有同学反馈执行SQL脚本步骤使用有问题,那么咱们今天一起来学习下该步…

【数据分析基础】实验一 Python运算符、内置函数、序列基本用法

一、实验目的 熟练运用Python运算符。熟练运用Python内置函数。掌握Python的基本输入输出方法。了解lambda表达式作为函数参数的用法。掌握列表、元组、字典、集合的概念和基本用法。了解Python函数式编程模式。 二、实验内容: 1. 在命令模式测试如下命令&#x…

AI-知识库搭建(一)腾讯云向量数据库使用

一、AI知识库 将已知的问答知识,问题和答案转变成向量存储在向量数据库,在查找答案时,输入问题,将问题向量化,匹配向量库的问题,将向量相似度最高的问题筛选出来,将答案提交。 二、腾讯云向量数…

【C++题解】1261. 韩信点兵

问题:1261. 韩信点兵 类型: 题目描述: 韩信有一对士兵,他想知道有多少人,他就让士兵报数,如果按照 1 到 5 报数,最末一个士兵报的数为 1 。 按照 1 到 6 报数,最末一个士兵报的数为…

Oracle EBS AP发票创建会计科目错误:子分类帐日记帐分录未按输入币种进行平衡

系统版本 RDBMS : 12.1.0.2.0 Oracle Applications : 12.2.6 问题症状: 提交“创建会计科目”请求提示错误信息如下: 中文报错: 该子分类帐日记帐分录未按输入币种进行平衡。请检查日记帐分录行中输入的金额。 英文报错:The subledger journal entry does not balance i…

【Stable Diffusion】(基础篇二)—— Stable Diffusion图形界面介绍和基本使用流程

本系列笔记主要参考B站nenly同学的视频教程,传送门:B站第一套系统的AI绘画课!零基础学会Stable Diffusion,这绝对是你看过的最容易上手的AI绘画教程 | SD WebUI 保姆级攻略_哔哩哔哩_bilibili 在上一篇博客中,我们成功…

数字科技如何助力博物馆设计,强化文物故事表现力?

国际博物馆日是每年为了推广博物馆和文化遗产,而设立的一个特殊的日子,让我们可以深入探讨博物馆如何更好地呈现和保护我们的文化遗产,随着近年来的数字科技发展,其在博物馆领域的应用越来越广泛,它为博物馆提供了新的…

把qml程序制作成安装包(Windows)

先检查一下有没有安装Qt Installer FrameWork 需要用到Qt自带的打包工具: Qt Installer FrameWork,虽然有点拉胯,但是也能用用。一般放在Qt目录下的Tools文件夹下,如果没有看到,就去在线下载器去下载一下。 步骤1 随…