超速解读多模态InternVL-Chat1.5 ,如何做到开源SOTA——非官方首发核心技巧版(待修订)

news2024/11/26 5:22:27

解读InternVL-chat1.5系列

最近并行是事情太杂乱了,静下心来看一看优秀的开源项目,但是AI技术迭代这么快,现在基本是同时看五、六个方向的技术架构和代码,哪个我都不想放,都想知道原理和代码细节,还要自己训练起来,导致每天脑袋隐隐作痛了,感觉有点天龙八部里的“鸠摩智”的状态。
…目前的大模型核心能力热点是其通用能力的提升,从判别式、到对比学习、再到如今的多阶段对齐训练。VLM多模态模型在这两年已经逐渐普及(比如qwen-vl\deepseek-vl\yi-vl\glm4-v\minicpm-v)等优秀开源模型,今天我们来直接看下当前的开源SOTA模型,InternVl1.5是上海AI LAB一直迭代的多模态视觉语言大模型,之前的版本是1.2,今年迭代到1.5后达到了国内开源的SOTA评测分数,今天我们来解读一下InternVL1.5是如何做到的!

文章更新比较仓促,我会后续再修订!感谢阅读

`

文章目录

  • 解读InternVL-chat1.5系列
    • 文章更新比较仓促,我会后续再修订!感谢阅读
  • 阅读前置知识(Internvit的由来)
  • 一、模型信息概览
  • 二、Feature
    • 1. PT阶段
    • 2. 训练数据
    • 3. Scale up Model
    • 4. Dynamic Aspect Ratio Matching
  • 总结

如今的VLM多模态虽然训练方式阶段各有不同,但是架构范式同质化严重:
1. 视觉基础模型(多模态图文能力的视觉模型,不只有检测、分割、分类、还有图文检索、图像描述、多模态对话的能力)
2. LLM模型
3. 链接两个模型的mlp projector

阅读前置知识(Internvit的由来)

因为InternVL是从1.0开始迭代的,这里我们主要从1.5的版本和其前一版本1.2来进行解析!
Intervl1.0 经过三个阶段:对比学习PT、生成PT、SFT得到的一个视觉语言模型(数据多到少,质量低到高),最后通过深度和广度维度测试选定为6B模型。
在这里插入图片描述

作者团队介绍到:
Intervit就是从Intervl中抽出internVIT-6B.(应该是48层变成45层)作为VLM视觉基础模型;也可以直接
作分类和图文检索、和SD的文本编码器(开源项目Mulan)
PIXEL Shuffle :空间下采样操作,具体在MLP层输入之前;reshape后,默认下采样0.5,1024->256,这样减少了输入到LLM的token数量。代码参考:

vit_embeds = self.pixel_shuffle(vit_embeds,scale_factor=self.downsample_ratio)

一、模型信息概览

internVL-chat参考了LLaVA-NeXT-34B的做法,scale up 模型尺寸来验证VL性能的提升,这是1.2版本的思路,而1.5建立在1.2基础上进行了 迭代优化,先简要介绍下1.5,以及和1.2的区别。
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
其中包含现在开源的和Plus版本:
MINI-intervl1.5-4 25.5B (internvit (6B)+internlm2-chat-20B(19.86B)+MLP)
MINI-intervl1.5-PLUS: (internvit (6B)+Nous-Hermes-2-Yi-34B+MLP) <未开源>

其中MIN包含:
MINI-intervl1.5-4.2B (internvit (300M)+phi3-mini-128K(3.8b)+MLP)
MINI-intervl1.5-2.2B (internvit (300M)+internLM2-chat_1.8B+MLP)
在这里插入图片描述

同样我们从上图对比中可以直观看到1.2到1.5之间一些明显的区别,同样也是改进提升的部分。
主要部分来说LLM的模型基座基本是一样的从小到大,再到34B的Nous-Hermes-2-Yi-34B(HF上开源fine-tune的版本)为PLUS版本的基座,基本上都是挑选的开源模型和其兄弟团队的intern2LM系列。所以LLM模型本身没什么特别需要说明的。
而至于MINI版本是其视觉编码器InternVIT通过蒸馏从6B压缩到300M得到的,再结合PHI3这些小模型。接下来让我们进入核心环节。

二、Feature


不同的改进之处

1. PT阶段

1.2版本的PT阶段VIT+MLP,而1.5的PT阶段对于大尺寸的LLM只训练MLP,小尺寸的LLM训练MLP+vit,

额外说下在PT后模型会被抽出来,减少三层也就是Internvit模型从原来48层减少到45层,再试用Pixel
suffle减少token数量到256.

2. 训练数据

额外使用了GPT-40模型进行标注生成,已经开源在huggingface上

1.5比1.2扩充了在SFT阶段扩充了高质量的双语数据(多语言、精细Prompt标注),特别强化了图像分辨率支持到4K和OCR能力。
因为多模态训练本身需要多任务数据集去训练,数据是保证模型评分指标的第一优先级。
在这里插入图片描述在这里插入图片描述

不同的只是LLM模型的不同。MINI版本的分别选择了internLM2-chat-1.8B和PHI3-mini-128K
在这里插入图片描述

3. Scale up Model

视觉模型与LLM参数量差距过大,一味提升大模型的参数量,VLM的能力并不会随之线性提升,因此从过去的版本的InternVL中通过实验证明了,视觉编码器的scale up也同样重要。所以视觉模型和语言模型同时scale up ,对于性能提升是有必要的,这也贯彻了sacle law。

4. Dynamic Aspect Ratio Matching

这是internvl1.5非常重要的一步骤,因为模型作者认为图像分辨率对于性能提升非常关键,因此聚焦于动态自定义分辨率,设计实现如上图:

  1. 预设纵横比集合:例如{1:1, 1:2, 1:3, 1:4, 1:5, 1:6, 2:3, 3:2 …,2:6}多种可能的组合(这取决于自定义min和max两个变量,后面代码会说到)
  2. 最优匹配:对于每个输入图像,系统会计算其纵横比,并与预定义的集合进行比较,找出差异最小的纵横比。那么如果有多个匹配的纵横比(即并列最小差异)怎么办?比较原始图像面积与特定纵横比下的图像面积来实现的。如果特定纵横比下的图像面积大于原始图像面积的一半,那么这个纵横比会被选为最优纵横比。
  3. patch 分割:输入图像被动态分割成448x448的patch ,patch的数量是根据图像匹配的纵横比和分辨率 (在1到12之间变化)。
  4. 图像分割与缩略图(Image Division & Thumbnail)
    调整图像分辨率:一旦确定了合适的纵横比,图像将被调整到相应的分辨率。例如,一个800×1300的图像将被调整到896×1344。
    分割图像:调整后的图像被分割成448×448像素的瓦片。在训练阶段,根据图像的纵横比和分辨率,瓦片的数量可以在1到12,推理时候是1到40
    全局上下文缩略图:同时会resize 原始图像到448x448,帮助模型理解整体场景。

核心代码如下,比较简单不做注释了:

from transformers import AutoTokenizer, AutoModel
import torch
import torchvision.transforms as T
from PIL import Image

from torchvision.transforms.functional import InterpolationMode


IMAGENET_MEAN = (0.485, 0.456, 0.406)
IMAGENET_STD = (0.229, 0.224, 0.225)


def build_transform(input_size):
    MEAN, STD = IMAGENET_MEAN, IMAGENET_STD
    transform = T.Compose([
        T.Lambda(lambda img: img.convert('RGB') if img.mode != 'RGB' else img),
        T.Resize((input_size, input_size), interpolation=InterpolationMode.BICUBIC),
        T.ToTensor(),
        T.Normalize(mean=MEAN, std=STD)
    ])
    return transform


def find_closest_aspect_ratio(aspect_ratio, target_ratios, width, height, image_size):
    best_ratio_diff = float('inf')
    best_ratio = (1, 1)
    area = width * height
    for ratio in target_ratios:
        target_aspect_ratio = ratio[0] / ratio[1]
        ratio_diff = abs(aspect_ratio - target_aspect_ratio)
        if ratio_diff < best_ratio_diff:
            best_ratio_diff = ratio_diff
            best_ratio = ratio
        elif ratio_diff == best_ratio_diff:
            if area > 0.5 * image_size * image_size * ratio[0] * ratio[1]:
                best_ratio = ratio
    return best_ratio

#动态分辨率预处理
def dynamic_preprocess(image, min_num=1, max_num=6, image_size=448, use_thumbnail=False):
    orig_width, orig_height = image.size
    aspect_ratio = orig_width / orig_height

    # calculate the existing image aspect ratio
    target_ratios = set(
        (i, j) for n in range(min_num, max_num + 1) for i in range(1, n + 1) for j in range(1, n + 1) if
        i * j <= max_num and i * j >= min_num)
    target_ratios = sorted(target_ratios, key=lambda x: x[0] * x[1])

    # find the closest aspect ratio to the target
    target_aspect_ratio = find_closest_aspect_ratio(
        aspect_ratio, target_ratios, orig_width, orig_height, image_size)

    # calculate the target width and height
    target_width = image_size * target_aspect_ratio[0]
    target_height = image_size * target_aspect_ratio[1]
    blocks = target_aspect_ratio[0] * target_aspect_ratio[1]

    # resize the image
    resized_img = image.resize((target_width, target_height))
    processed_images = []
    for i in range(blocks):
        box = (
            (i % (target_width // image_size)) * image_size,
            (i // (target_width // image_size)) * image_size,
            ((i % (target_width // image_size)) + 1) * image_size,
            ((i // (target_width // image_size)) + 1) * image_size
        )
        # split the image
        split_img = resized_img.crop(box)
        processed_images.append(split_img)
    assert len(processed_images) == blocks
    if use_thumbnail and len(processed_images) != 1:
        thumbnail_img = image.resize((image_size, image_size))
        processed_images.append(thumbnail_img)
    return processed_images


def load_image(image_file, input_size=448, max_num=6):
    image = Image.open(image_file).convert('RGB')
    transform = build_transform(input_size=input_size)
    images = dynamic_preprocess(image, image_size=input_size, use_thumbnail=True, max_num=max_num)
    pixel_values = [transform(image) for image in images]
    pixel_values = torch.stack(pixel_values)
    return pixel_values

额外的实验结果是,训练在1-12 块Patch的范围内,但是推理时候泛化到了40个,(开始说过VIT模型输出是256个token,所以256x(40+1)=10496),实验证明24块为最优效果。

后续有代码相关问题和实践问题我会修订补充在这里

总结

internvl,通过自己提炼的Internvit和探索大模型参数,最终以6B为基准作为基线视觉编码器,再通过提高分辨率改为动态;在视觉模型上下了很大的功夫;其次同样scale up大模型参数量,这也符合scale law的经验,但是最关键的还有其1.5版本尚未开源的高质量数据集(1.2的数据集也可以用,但是明显1.5有一多半的功劳还是数据),期待后续开源数据集。其MINI系列提供了2B和4B版本的模型对于散修来说非常友好,最近几天我也在折腾,打算先用Lora试(用MINI2B版本,进行Lora target qkv \bf16 大概19G+显存的训练开销),值得一提的是其尚未开源的PLUS版本应该Beach mark得分会更高,但是因为模型参数40B比较大 ,可能普通散修没有资源来微调。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1795563.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

性能飙升50%,react-virtualized-list如何优化大数据集滚动渲染

在处理大规模数据集渲染时&#xff0c;前端性能常常面临巨大的挑战。本文将探讨 react-virtualized-list 库如何通过虚拟化技术和 Intersection Observer API&#xff0c;实现前端渲染性能飙升 50% 的突破&#xff01;除此之外&#xff0c;我们一同探究下该库还支持哪些新的特性…

【嵌入式DIY实例】-OLED显示天气数据

OLED显示天气数据 文章目录 OLED显示天气数据1、硬件准备与接线2、天气数据获取准备3、代码实现在这个物联网项目中,本文将展示如何使用 ESP8266 NodeMCU (ESP-12E) Wi-Fi 开发板和 SSD1306 OLED 显示屏(12864 像素)制作一个简单的互联网气象站。 NodeMCU 从天气网站 openwe…

JavaWeb3 Ajax+Axios+Element+Nginx部署

Ajax 异步JS和XML 1.数据交换&#xff1a;给服务器发送请求&#xff0c;并获取服务器相应的数据 2.异步交互&#xff1a;在不重新加载整个页面的情况下&#xff0c;与服务器交换数据并更新部分网页 同步与异步 原生Ajax <!DOCTYPE html> <html> <body><…

kafka-消费者-消费异常处理(SpringBoot整合Kafka)

文章目录 1、消费异常处理1.1、application.yml配置1.2、注册异常处理器1.3、消费者使用异常处理器1.4、创建生产者发送消息1.5、创建SpringBoot启动类1.6、屏蔽 kafka debug 日志 logback.xml1.7、引入spring-kafka依赖1.8、消费者控制台&#xff1a;1.8.1、第一次启动SpringK…

【WP】猿人学_17_天杀的Http2.0

https://match.yuanrenxue.cn/match/17 抓包分析 居然对Fiddler有检测&#xff0c;不允许使用 那就使用浏览器抓包&#xff0c;好像没发现什么加密参数&#xff0c;然后重放也可以成功&#xff0c;时间长了也无需刷新页面&#xff0c;尝试Python复现。 Python复现 import …

在线标注流程

文章目录 在线标注流程标注方法 在线标注流程 登录地址&#xff1a;http://7a27c5e078f644a2a9b734603913c65e.login.bce.baidu.com 出现页面&#xff1a; 登录名&#xff1a; 三个中任意一个 密码&#xff1a;ZNSJ123a 登录之后叉掉。再打开这个网站&#xff1a;https://…

CAD 文件(DXF / DWG)转换为(DXF / PDF / PNG / SVG)

方法一Github 这个是ezdxf出品的&#xff0c;可以使用命令行的方式进行转换 ezdxf draw -o file.<png|svg|pdf> <file.dxf>也可以自己改动代码 examples/addons/drawing/pdf_export.py 但是直接运行会有误&#xff0c;以下是我改动后的代码&#xff1a; from ez…

ArrayList——简单洗牌算法

特殊语法介绍&#xff1a; List<List<E>> 该语法情况比较特殊&#xff0c;相当于一个“二维数组”存着一个个线性表的结构&#xff0c;如图&#xff1a; 该语法的灵活性强&#xff0c;可适用于多种类型和多种情况。接下来就使用该语法来实现一个简单的洗牌操作。…

【Linux取经路】网络套接字编程——初识篇

文章目录 一、端口号1.1 认识端口号1.2 端口号 VS 进程 PID 二、认识 TCP 协议三、认识 UDP四、网络字节序列五、socket 编程接口5.1 常用 API5.2 sockaddr 结构 六、结语 一、端口号 网络通信的本质是应用层软件进行数据的发送和接受&#xff0c;软件在启动之后&#xff0c;本…

快速自定义表单开发的优势介绍

进行高效率的办公是很多职场人的梦想。借助什么样的软件平台可以提质增效&#xff1f;低代码技术平台是当前较为流行的办公软件平台产品&#xff0c;具有灵活性、易操作、好维护等多个优势特点&#xff0c;操作人员只需要像搭积木似地操作&#xff0c;就可以搭建属于客户的个性…

[element-ui]el-form自定义校验-图片上传验证(手动触发部分验证方法)

背景&#xff1a; 在做导入文件功能的时候&#xff0c;需要校验表单&#xff0c;如图所示 店铺字段绑定在表单数据对象上&#xff0c;在点击确定的时候正常按照表单验证规则去校验&#xff0c;就不再赘述。 文件上传是个异步过程&#xff0c;属性值改变后不会去触发验证规则…

一.网络基础——OSI七层模型

一.OSI七层模型 OSI&#xff08;Open System Interconnection&#xff0c;开放系统互连&#xff09;七层网络模型被称为开放式系统互联参考模型&#xff0c;它是一个逻辑上的定义和规范; 它把网络从逻辑上分为了7层. 每一层都有相关、相对应的物理设备&#xff0c;比如路由器&…

[数据集][目标检测]焊接处缺陷检测数据集VOC+YOLO格式3400张8类别

数据集格式&#xff1a;Pascal VOC格式YOLO格式(不包含分割路径的txt文件&#xff0c;仅仅包含jpg图片以及对应的VOC格式xml文件和yolo格式txt文件) 图片数量(jpg文件个数)&#xff1a;3400 标注数量(xml文件个数)&#xff1a;3400 标注数量(txt文件个数)&#xff1a;3400 标注…

FFmpeg播放器的相关概念【1】

播放器框架 相关术语 •容器&#xff0f;文件&#xff08;Conainer/File&#xff09;&#xff1a;即特定格式的多媒体文件&#xff0c;比如mp4、flv、mkv等。 • 媒体流&#xff08;Stream&#xff09;&#xff1a;表示时间轴上的一段连续数据&#xff0c;如一段声音数据、一段…

6.6学习总结

一.算法练习(Codeforces Round 949 (Div. 2)和) B. Turtle and an Infinite Sequence 思路&#xff1a;对于数字而言&#xff0c;轮之后的结果是所有数的或。因此只需要求区间或就行了。(其实就是找区间左边界,二进制中的特殊位置,将后面的所有位都变成1,最后输出结果) 代码实…

关于计算机是如何工作的

计算机的发展历程 世界上的第一个计算机 冯诺依曼机构体系 1.存储器 (包括内存(存储空间小,访问速度快,成本高,掉电后数据丢失) 外存(硬盘,软盘,U盘,光盘)),存储空间小,访问速度慢,成本低,掉电后数据仍在 2.CPU(中央处理单元,计算机最核心的部分,用于算术运算和逻辑判断),…

【ARM Cache 及 MMU 系列文章 6.2 -- ARMv8/v9 Cache 内部数据读取方法详细介绍】

请阅读【ARM Cache 及 MMU/MPU 系列文章专栏导读】 及【嵌入式开发学习必备专栏】 文章目录 Direct access to internal memoryL1 cache encodingsL1 Cache Data 寄存器Cache 数据读取代码实现Direct access to internal memory 在ARMv8架构中,缓存(Cache)是用来加速数据访…

算法金 | 再见!!!KNN

大侠幸会&#xff0c;在下全网同名「算法金」 0 基础转 AI 上岸&#xff0c;多个算法赛 Top 「日更万日&#xff0c;让更多人享受智能乐趣」 KNN算法的工作原理简单直观&#xff0c;易于理解和实现&#xff0c;这使得它在各种应用场景中备受青睐。 我们将深入探讨KNN算法&…

带你了解消防安全与应急救援,2024北京消防展6月盛大开启

带你了解消防安全与应急救援&#xff0c;2024北京国际消防展6.26盛大开启 在日益关注安全问题的今天&#xff0c;消防安全与应急救援已经成为社会发展的重要一环。为了提高全民消防安全意识&#xff0c;推动应急救援技术的发展&#xff0c;2024年北京国际消防展将于6月26日盛大…

Docker自定义镜像实现(SpringBoot程序为例)

✅作者简介&#xff1a;大家好&#xff0c;我是 Meteors., 向往着更加简洁高效的代码写法与编程方式&#xff0c;持续分享Java技术内容。&#x1f34e;个人主页&#xff1a;Meteors.的博客&#x1f49e;当前专栏&#xff1a;知识备份✨特色专栏&#xff1a;知识分享&#x1f96…