1.1 OpenCV随手简记(一)

news2025/3/15 7:55:45

OpenCV学习篇

OpenCV (Open Source Computer Vision Library) 是一个开源的计算机视觉库,它提供了大量的算法和函数,用于图像处理、计算机视觉和机器学习等领域。

1. OpenCV 简介

1.1 OpenCV 的起源和发展

OpenCV 项目始于 1999 年,由 Intel 公司发起,旨在为计算机视觉研究人员和开发者提供一个开源的库。经过多年的发展,OpenCV 已经成为最流行的计算机视觉库之一,被广泛应用于学术研究和工业应用中。

1.2 OpenCV 的特点和优势

  • 开源免费:OpenCV 是开源的,可以免费使用和修改。
  • 跨平台:OpenCV 支持多种操作系统,包括 Windows、Linux、Mac OS 等。
  • 功能丰富:OpenCV 提供了大量的图像处理、计算机视觉和机器学习算法,涵盖了从基础到高级的各种功能。
  • 易于使用:OpenCV 的 API 设计简洁易懂,易于学习和使用。

2. OpenCV 安装和配置

2.1 OpenCV 安装

OpenCV 可以通过多种方式安装,包括预编译的二进制包、源代码编译以及使用包管理工具(如 pip)安装。

2.2 OpenCV 配置

安装 OpenCV 后,需要配置开发环境,包括添加库路径、头文件路径等。

3. OpenCV 基础

3.1 图像读取和显示

  • cv2.imread():读取图像文件。
  • cv2.imshow():显示图像。
  • cv2.waitKey():等待按键事件。

3.2 图像基础操作

  • cv2.cvtColor():图像颜色空间转换。
  • cv2.resize():图像缩放。
  • cv2.copyMakeBorder():图像边界扩展。
  • cv2.split() 和 cv2.merge():图像通道分离和合并。

3.3 图像滤波

  • cv2.blur():均值滤波。
  • cv2.GaussianBlur():高斯滤波。
  • cv2.medianBlur():中值滤波。
  • cv2.bilateralFilter():双边滤波。

3.4 图像边缘检测

  • cv2.Canny():Canny 边缘检测算法。
  • cv2.Sobel():Sobel 算子。
  • cv2.Laplacian():Laplacian 算子。

3.5 图像形态学操作

  • cv2.erode():腐蚀操作。
  • cv2.dilate():膨胀操作。
  • cv2.morphologyEx():形态学操作(开运算、闭运算等)。

4. OpenCV 进阶

4.1 特征检测与匹配

  • cv2.goodFeaturesToTrack():角点检测。
  • cv2.SIFT()cv2.SURF()cv2.ORB():特征点检测和描述。
  • cv2.BFMatcher()cv2.FlannBasedMatcher():特征匹配。

4.2 轮廓检测

  • cv2.findContours():寻找图像中的轮廓。
  • cv2.drawContours():绘制轮廓。

4.3 图像分割

  • cv2.threshold():图像阈值分割。
  • cv2.watershed():分水岭算法。

4.4 联通组件分析

  • cv2.connectedComponents():连通组件分析。

4.5 目标跟踪

  • cv2.TrackerMIL_create():多实例学习跟踪器。
  • cv2.TrackerKCF_create():核相关滤波跟踪器。

5. OpenCV 应用

5.1 人脸检测

人脸检测是计算机视觉中的一个经典问题,它可以帮助我们识别图像或视频中的 faces。OpenCV 提供了级联分类器(Cascade Classifier)用于人脸检测。

  • 级联分类器:级联分类器是一种基于机器学习的分类器,它由多个简单的分类器级联而成。每个分类器负责检测图像中的某个局部特征,如果所有分类器都认为该区域是人脸,则最终判断该区域为人脸。
  • HAAR 特征:HAAR 特征是一种用于图像分类的特征,它基于图像的灰度差。OpenCV 提供了 HAAR 特征的训练工具,可以帮助您训练自己的人脸检测模型。
  • 示例代码*
    # 创建级联分类器对象
    face_cascade = cv2.CascadeClassifier('haarcascade_frontalface_default.xml')
    # 读取图像
    img = cv2.imread('image.jpg')
    # 将图像转换为灰度图
    gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
    # 检测图像中的人脸
    faces = face_cascade.detectMultiScale(gray, scaleFactor=1.1, minNeighbors=5, minSize=(30, 30), maxSize=(100, 100))
    # 绘制人脸矩形框
    for (x, y, w, h) in faces:
       cv2.rectangle(img, (x, y), (x+w, y+h), (255, 0, 0), 2)
    # 显示图像
    cv2.imshow('Image', img)
    cv2.waitKey(0)
    cv2.destroyAllWindows()

5.2 车牌识别

车牌识别是计算机视觉中的一个重要应用,它可以用于交通监控、智能停车等领域。OpenCV 提供了多种工具和算法,可以帮助您实现车牌识别。

  • 轮廓检测:使用 cv2.findContours() 函数可以检测图像中的轮廓,从而找到车牌区域。
  • 模板匹配:使用 cv2.matchTemplate() 函数可以将车牌模板与图像中的区域进行匹配,从而识别车牌。
  • 字符识别:可以使用 Tesseract OCR 库或其他字符识别算法识别车牌中的字符。
  • 示例代码*
    # 读取图像
    img = cv2.imread('image.jpg')
    # 将图像转换为灰度图
    gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
    # 使用 Sobel 算子进行边缘检测
    edges = cv2.Canny(gray, 50, 150, apertureSize=3)
    # 查找轮廓
    contours, hierarchy = cv2.findContours(edges, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
    # 绘制轮廓
    cv2.drawContours(img, contours, -1, (0, 255, 0), 3)
    # 显示图像
    cv2.imshow('Image', img)
    cv2.waitKey(0)
    cv2.destroyAllWindows()

    5.3 物体识别

  • 物体识别是计算机视觉中的一个重要应用,它可以用于智能监控、智能交通等领域。OpenCV 提供了多种工具和算法,可以帮助您实现物体识别。
  • 支持向量机 (SVM):SVM 是一种用于分类的机器学习算法,它可以用于识别图像中的物体。
  • HOG 描述子:HOG 描述子是一种用于图像特征提取的算法,它可以用于描述图像中的物体形状。
  • 示例代码*
    # 创建 SVM 分类器
    svm = cv2.ml.SVM_create()
    # 训练 SVM 分类器
    svm.train(train_data, cv2.ml.ROW_SAMPLE, labels)
    # 使用 SVM 分类器识别图像中的物体
    rects, labels = svm.detectMultiScale(img, scaleFactor=1.05, minNeighbors=3, minSize=(30, 30))
    # 绘制识别结果
    for (x, y, w, h) in rects:
       cv2.rectangle(img, (x, y), (x+w, y+h), (0, 255, 0), 2)
    # 显示图像
    cv2.imshow('Image', img)
    cv2.waitKey(0)
    cv2.destroyAllWindows()

5.4 视频分析

视频分析是计算机视觉中的一个重要应用,它可以用于运动检测、目标跟踪、行为识别等领域。OpenCV 提供了多种工具和算法,可以帮助您实现视频分析。

  • 视频读取:使用 cv2.VideoCapture() 函数可以读取视频文件。
  • 视频写入:使用 cv2.VideoWriter() 函数可以将视频写入文件。
  • 背景减除器:使用 cv2.createBackgroundSubtractorMOG2() 函数可以创建背景减除器,用于检测视频中的运动目标。
  • 示例代码*
    # 创建 VideoCapture 对象
    cap = cv2.VideoCapture('video.mp4')
    # 创建 BackgroundSubtractorMOG2 对象
    fgbg = cv2.createBackgroundSubtractorMOG2()
    # 读取视频帧
    while True:
       ret, frame = cap.read()
       if not ret:
           break
       # 应用背景减除器
       fgmask = fgbg.apply(frame)
       # 显示前景掩码
       cv2.imshow('Foreground Mask', fgmask)
       # 按 'q' 键退出循环
       if cv2.waitKey(1) & 0xFF == ord('q'):
           break
    # 释放 VideoCapture 对象
    cap.release()
    # 关闭所有窗口
    cv2.destroyAllWindows()

6. OpenCV 扩展

6.1 DNN 模块

OpenCV 的 DNN (Deep Neural Network) 模块提供了深度学习相关的功能,可以用于图像分类、目标检测、语义分割等任务。

  • 模型加载:使用 cv2.dnn.readNetFromDarknet()cv2.dnn.readNetFromTensorflow() 等函数可以加载不同的深度学习模型。
  • 模型推理:使用 cv2.dnn Net::forward() 函数可以对图像进行模型推理,获取模型的输出结果。
  • 示例代码*
    # 创建网络对象
    net = cv2.dnn.readNetFromDarknet('yolov3.cfg')
    # 加载权重文件
    net.setPreferableBackend(cv2.dnn.DNN_BACKEND_OPENCV)
    net.setPreferableTarget(cv2.dnn.DNN_TARGET_CPU)
    # 读取图像
    img = cv2.imread('image.jpg')
    # 获取网络输入尺寸
    blob = cv2.dnn.blobFromImage(img, scalefactor=1/255, size=(416,416), mean=(0,0,0), swapRB=True, crop=False)
    # 设置网络输入
    net.setInput(blob)
    # 执行模型推理
    outputs = net.forward()
    # 处理模型输出结果
    ...

6.2 ML模块

OpenCV 的 ML (Machine Learning) 模块提供了机器学习相关的功能,可以用于分类、回归、聚类等任务。

  • SVM:支持向量机 (SVM) 是一种用于分类的机器学习算法。
  • KNN:K 近邻 (KNN) 是一种用于分类和回归的机器学习算法。
  • 决策树:决策树是一种用于分类和回归的机器学习算法。
  • 示例代码*
    ## 创建 SVM 分类器
    svm = cv2.ml.SVM_create()
    ## 设置 SVM 参数
    svm.setType(cv2.ml.SVM_C_SVC)
    svm.setKernel(cv2.ml.SVM_LINEAR)
    svm.setTermCriteria((cv2.TERM_CRITERIA_MAX_ITER, 100, 1e-6))
    ## 训练 SVM 分类器
    svm.train(train_data, cv2.ml.ROW_SAMPLE, labels)
    ## 使用 SVM 分类器进行预测
    ret, result = svm.predict(test_data)
    ## 输出预测
    

7. OpenCV 学习资源

  • OpenCV 官方文档:OpenCV documentation index
  • OpenCV 官方教程:OpenCV: OpenCV Tutorials
  • OpenCV 示例代码:GitHub - opencv/opencv: Open Source Computer Vision Library
  • OpenCV 教程网站:OpenCV: OpenCV Tutorials
  • OpenCV 论坛:Questions - OpenCV Q&A Forum

af84faf45e6b4c4a84f14ad6a388c832.png

 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1790217.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

【C#学习笔记】属性和字段

文章目录 前言属性和字段的区别字段访问修饰符和关键字定义变量类型的定义变量命名变量的赋值 属性 不同的使用情况 前言 最近在工作的过程中常常会觉得自己在程序设计方面的能力还是有欠缺。例如一直对于变量的声明感到不足,在工作中为了图方便总是直接public定义…

计算机图形学入门06:视口变换

在前面的内容中,在MVP变换(模型变换,视图变换,投影变换)完后,所有的物体位置都变换到了[-1, 1]的标准立方体里,下一步要把物体绘制到屏幕(Screen)上。 1.什么是屏幕? 对于图形学来说把屏幕抽象的认为是一个…

解锁EasyRecovery2024专业版!仅需一键点击恢复数据即可完美数据恢复

EasyRecovery2024是一款专业的数据恢复软件,它能够帮助用户找回因各种原因丢失的数据。然而,有些用户为了节省开支,可能会寻找破解版,也就是所谓的crack版本。但是,使用破解版软件存在很多风险,包括但不限于…

开关电源基本原理2

目录 开关电源的传递函数 电感量的计算​编辑 Buck电路分析 Boost电路分析 Buck-Boost电路分析 开关电源的传递函数 占空比Dton/Tton/(tontoff) 由EtVontonVofftoff 得 (适用于所有拓扑) 表1.三种变换器的传递函数 电感量的计算 其中&#xf…

高效数据处理的前沿:【C++】、【Redis】、【人工智能】与【大数据】的深度整合

目录 1.为什么选择 C 和 Redis? 2.人工智能与大数据的背景 1.大数据的挑战 2.人工智能的需求 3.C 与 Redis 的完美结合 1.安装 Redis 和 Redis C 客户端 2.连接 Redis 并进行数据操作 高级数据操作 列表操作 哈希操作 4.与大数据和人工智能结合 5.实际应…

Vue3-Ref Reactive toRef toRefs对比学习、标签ref与组件ref

响应式数据: Ref 作用:定义响应式变量。 语法:let xxx ref(初始值)(里面可以是任何规定内类型、数组等)。 返回值:一个RefImpl的实例对象,简称ref对象或ref,ref对象的value属性是响应式的。 注意点&am…

AndroidStudio中debug.keystore的创建和配置使用

1.如果没有debug.keystore,可以按照下面方法创建 首先在C:\Users\Admin\.android路径下打开cmd窗口 之后输入命令:keytool -genkey -v -keystore debug.keystore -alias androiddebugkey -keyalg RSA -validity 10000 输入两次密码(密码不可见,打码处随便填写没关系) 2.在build…

【DSP】xDAIS算法标准

1. 简介 在安装DSP开发支持包时,有名为 “xdais_7_21_01_07”文件夹。xDAIS全称: TMS320 DSP Algorithm Standard(算法标准)。39条规则,15条指南。参考文档。参考文章。 2. 三个层次 3.接口 XDAIS Digital Media。编解码引擎。VISA(Video&…

PS的抠图算法原理剖析 1

以这个抠tree为例子 在PS里,操作过程是让你开启R G B三个通道 分别看一下 哪一个的对比最明显 上面的图片 树叶肯定B最少 天空B富裕,所以对比最明显的就用B通道 然后使用一些奇怪的函数,把texture.bbb这张图片变成黑白,纯黑纯白 那…

高通开发系列 - 借助libhybris库实现Linux系统中使用Andorid库

By: fulinux E-mail: fulinux@sina.com Blog: https://blog.csdn.net/fulinus 喜欢的盆友欢迎点赞和订阅! 你的喜欢就是我写作的动力! 返回:专栏总目录 目录 概述Android代码下载和编译aarch64开发环境libhybris下载和编译libhybris测试验证调用库中的函数概述 我主要是基于…

Renesas MCU之定时器计数功能应用

目录 概述 1 功能介绍 1.1 时钟相关配置 1.2 应用接口 2 FSP配置Project参数 2.1 软件版本信息 2.2 配置参数 2.3 项目生成 3 定时器功能代码实现 3.1 定时器初始化函数 3.2 定时器回调函数 4 功能测试 5 参考文档 概述 本文主要介绍Renesas MCU的定时器功能的基…

图像背景去除工具:removebg

文章目录 简介面向不同用户价格 简介 removebg,就是remove background,是一款智能图片背景去除工具。 在免费使用时,用到的是本地的CPU。我第一次试用时,图片刚上传之后,电脑的帧率便直线下降,鼠标都拖不…

[Redis]Zset类型

Zset有序集合相对于字符串、列表、哈希、集合来说会有一些陌生。 它保留了集合不能有重复成员的特点,但与集合不同的是,有序集合中的每个元素都有一个唯一的浮点类型的分数(score)与之关联,着使得有序集合中的元素是可…

深度学习笔记:2.Jupyter Notebook

Jupyter Notebook 常用操作快捷键魔法指令_jupyter notebook快捷键调用函数-CSDN博客https://blog.csdn.net/qq_26917905/article/details/137211336?ops_request_misc%257B%2522request%255Fid%2522%253A%2522171748112816800182160793%2522%252C%2522scm%2522%253A%25222014…

Redis 异常三连环

本文针对一种特殊情况下的Reids连环异常,分别是下面三种异常: NullPointerException: Cannot read the array length because “arg” is nullJedisDataException: ERR Protocol error: invalid bulk lengthJedisConnectionException: Unexpected end o…

产品经理的AI大模型实战指南:驾驭未来,引领创新

前言: 在数字化浪潮席卷全球的今天,AI大模型正以其惊人的潜力和速度,重塑着各行各业的生态。对于产品经理而言,如何在这场变革中站稳脚跟,甚至引领潮流,成为了一个亟待解决的问题。为此,我们特…

vue对图片进行裁剪

安装依赖&#xff1a; npm install cropperjs -save <template><div class"bigBox"><h3>预览</h3><!-- 裁剪按钮--><el-button click"sureSava">裁剪</el-button><el-button click"confirm">确…

前端 Web 与原生应用端 WebView 通信交互 - HarmonyOS Next

基于鸿蒙 HarmonyOS Next 与前端 Vue 通信交互相关小结; DevEco Studio NEXT Developer Preview2 Vue js 两端相互拟定好协议后,通过前端页面的点击事件,将所需的数据传输给原生移动端组件方法中,处理后将消息回传至前端. 根据官方文档的案例尝试,但没成功 ... 后经过几经尝试…

数字智能数字人直播带货软件系统 实现真人形象的1:1克隆 前后端分离 带完整的安装代码包以及搭建教程

系统概述 数字智能数字人直播带货小程序源码系统是一套集人工智能、3D建模、云计算等技术于一体的综合性解决方案。该系统通过深度学习算法&#xff0c;能够实现对真人形象的精准捕捉和1:1克隆&#xff0c;使数字人在直播过程中呈现出与真人无异的表现力。同时&#xff0c;系统…

YOLO-Worldv2两分钟快速部署

本次部署使用的框架基于ultralytics&#xff0c; 并且已经集成最新版本的YOLOv8框架&#xff1a; 一键环境配置 pip install ultralytics基础使用 训练 from ultralytics import YOLOWorld model YOLOWorld(yolov8x-worldv2.pt) results model.train(datacoco8.yaml, epo…