高效数据处理的前沿:【C++】、【Redis】、【人工智能】与【大数据】的深度整合

news2025/1/19 23:17:16

目录

1.为什么选择 C++ 和 Redis?

2.人工智能与大数据的背景

1.大数据的挑战

2.人工智能的需求

3.C++ 与 Redis 的完美结合

1.安装 Redis 和 Redis C++ 客户端

2.连接 Redis 并进行数据操作

高级数据操作

列表操作

哈希操作

4.与大数据和人工智能结合

5.实际应用案例分析

案例一:实时推荐系统

案例二:实时监控系统

进一步优化与扩展

性能优化

功能扩展

6.总结


在现代软件开发中,C++、人工智能、Redis和大数据已经成为不可或缺的技术元素。C++以其高性能和灵活性著称,广泛应用于系统编程和高性能计算。人工智能正在改变我们的生活方式,从自动驾驶汽车到智能助手,其应用无处不在。Redis作为一种内存数据结构存储,被广泛用于缓存、消息队列和实时数据处理。大数据技术则在处理和分析大量数据方面发挥着关键作用。

1.为什么选择 C++ 和 Redis?

C++ 作为一门高性能的编程语言,广泛应用于系统编程和大规模数据处理。它的主要优势在于:

  1. 性能:C++ 提供了对硬件的直接控制,能够实现高度优化的代码,特别是在需要高性能计算的场景下。
  2. 资源管理:通过 RAII(Resource Acquisition Is Initialization)等技术,C++ 能够高效地管理资源,避免内存泄漏等问题。
  3. 灵活性:C++ 支持面向对象编程、泛型编程和函数式编程,能够根据不同的需求选择最合适的编程范式。

Redis 是一个开源的内存数据结构存储系统,支持丰富的数据结构,如字符串、哈希、列表、集合等,常用于缓存、消息队列等场景。它的优势在于:

  1. 高性能:Redis 通过将数据存储在内存中,实现了极高的读写速度,适用于需要快速访问的数据。
  2. 多种数据结构:支持字符串、哈希、列表、集合、有序集合等多种数据结构,能够满足不同的应用需求。
  3. 简单易用:提供简单的命令行接口和丰富的客户端库,便于开发和维护。

将 C++ 与 Redis 结合,可以充分发挥两者的优势,实现高效的数据处理。

2.人工智能与大数据的背景

随着数据量的爆炸性增长,人工智能(AI)和大数据技术成为了处理和分析这些数据的关键手段。AI 依赖于大量数据进行训练和推理,而大数据技术则提供了存储和处理这些数据的工具。通过 C++ 和 Redis,我们可以构建高性能的系统来满足 AI 和大数据的需求。

1.大数据的挑战

在大数据时代,数据的规模、速度和多样性给传统的数据处理方法带来了巨大的挑战。主要挑战包括:

  1. 数据存储和管理:如何高效地存储和管理海量数据是一个关键问题。传统的关系型数据库在面对大规模数据时往往表现不佳。
  2. 数据处理速度:在需要实时处理的数据场景中,高效的数据处理速度至关重要。
  3. 数据分析和挖掘:如何从海量数据中提取有价值的信息,进行有效的分析和挖掘,是大数据技术的核心。

2.人工智能的需求

人工智能技术的核心在于算法和数据。随着深度学习和机器学习技术的发展,AI 对数据的需求越来越高。主要需求包括:

  1. 数据量:AI 模型的训练需要大量的数据,数据量越大,模型的性能通常越好。
  2. 数据质量:高质量的数据能够显著提升模型的准确性和鲁棒性。
  3. 数据访问速度:AI 训练过程中,需要频繁地访问和处理数据,因此数据的访问速度对整体性能有着重要影响。

3.C++ 与 Redis 的完美结合

通过结合 C++ 和 Redis,我们可以构建一个高效的数据处理系统,满足 AI 和大数据的需求。下面,我们通过具体的代码实例来展示如何实现这一目标。

1.安装 Redis 和 Redis C++ 客户端

首先,我们需要安装 Redis 服务器和 C++ Redis 客户端库。在 Ubuntu 上可以使用以下命令安装 Redis:

sudo apt-get update
sudo apt-get install redis-server

安装完成后,启动 Redis 服务器:

sudo service redis-server start

接下来,安装 C++ 的 Redis 客户端库,我们这里使用 hiredis

sudo apt-get install libhiredis-dev

2.连接 Redis 并进行数据操作

接下来,我们编写一个简单的 C++ 程序,演示如何连接 Redis 并进行数据存储和检索。

#include <iostream>
#include <hiredis/hiredis.h>

int main() {
    // 连接到 Redis 服务器
    redisContext *context = redisConnect("127.0.0.1", 6379);
    if (context == NULL || context->err) {
        if (context) {
            std::cerr << "Error: " << context->errstr << std::endl;
            redisFree(context);
        } else {
            std::cerr << "Can't allocate redis context" << std::endl;
        }
        return 1;
    }

    // 设置一个键值对
    redisReply *reply = (redisReply *)redisCommand(context, "SET %s %s", "key", "value");
    std::cout << "SET: " << reply->str << std::endl;
    freeReplyObject(reply);

    // 获取一个键值对
    reply = (redisReply *)redisCommand(context, "GET %s", "key");
    std::cout << "GET: " << reply->str << std::endl;
    freeReplyObject(reply);

    // 断开连接
    redisFree(context);
    return 0;
}

编译并运行上述代码:

g++ -o redis_example redis_example.cpp -lhiredis
./redis_example

输出结果应显示:

SET: OK
GET: value

高级数据操作

Redis 不仅支持简单的键值对操作,还支持更复杂的数据结构操作。下面我们来看一些高级的数据操作示例。

列表操作

Redis 的列表是一种简单的链表结构,支持插入、删除和读取操作。以下是一个示例,展示如何使用 C++ 操作 Redis 列表:

#include <iostream>
#include <hiredis/hiredis.h>

int main() {
    // 连接到 Redis 服务器
    redisContext *context = redisConnect("127.0.0.1", 6379);
    if (context == NULL || context->err) {
        if (context) {
            std::cerr << "Error: " << context->errstr << std::endl;
            redisFree(context);
        } else {
            std::cerr << "Can't allocate redis context" << std::endl;
        }
        return 1;
    }

    // 向列表中添加元素
    redisReply *reply = (redisReply *)redisCommand(context, "LPUSH %s %s", "mylist", "world");
    freeReplyObject(reply);
    reply = (redisReply *)redisCommand(context, "LPUSH %s %s", "mylist", "hello");
    freeReplyObject(reply);

    // 获取列表中的所有元素
    reply = (redisReply *)redisCommand(context, "LRANGE %s 0 -1", "mylist");
    if (reply->type == REDIS_REPLY_ARRAY) {
        for (size_t i = 0; i < reply->elements; i++) {
            std::cout << "Element " << i << ": " << reply->element[i]->str << std::endl;
        }
    }
    freeReplyObject(reply);

    // 断开连接
    redisFree(context);
    return 0;
}

在这个示例中,我们首先向列表 mylist 中添加了两个元素,然后获取并打印出列表中的所有元素。编译并运行代码,输出应类似于:

Element 0: hello
Element 1: world
哈希操作

Redis 的哈希是一种键值对集合,类似于 Python 中的字典。以下是一个示例,展示如何使用 C++ 操作 Redis 哈希:

#include <iostream>
#include <hiredis/hiredis.h>

int main() {
    // 连接到 Redis 服务器
    redisContext *context = redisConnect("127.0.0.1", 6379);
    if (context == NULL || context->err) {
        if (context) {
            std::cerr << "Error: " << context->errstr << std::endl;
            redisFree(context);
        } else {
            std::cerr << "Can't allocate redis context" << std::endl;
        }
        return 1;
    }

    // 设置哈希字段
    redisReply *reply = (redisReply *)redisCommand(context, "HSET %s %s %s", "myhash", "field1", "value1");
    freeReplyObject(reply);
    reply = (redisReply *)redisCommand(context, "HSET %s %s %s", "myhash", "field2", "value2");
    freeReplyObject(reply);

    // 获取哈希字段的值
    reply = (redisReply *)redisCommand(context, "HGET %s %s", "myhash", "field1");
    std::cout << "field1: " << reply->str << std::endl;
    freeReplyObject(reply);

    reply = (redisReply *)redisCommand(context, "HGET %s %s", "myhash", "field2");
    std::cout << "field2: " << reply->str << std::endl;
    freeReplyObject(reply);

    // 断开连接
    redisFree(context);
    return 0;
}

编译并运行代码,输出应类似于:

field1: value1
field2: value2

4.与大数据和人工智能结合

在实际应用中,我们可以将上述技术与大数据和人工智能算法结合。例如,利用 C++ 和 Redis 实现一个实时数据处理系统,将数据存储在 Redis 中,并通过 C++ 调用 AI 模型进行数据分析和预测。

以下是一个简化的示例,展示如何结合大数据和 AI 进行实时数据处理:

#include <iostream>
#include <hiredis/hiredis.h>
#include <vector>
#include "ai_model.h" // 假设我们有一个 AI 模型的头文件

int main() {
    // 连接到 Redis 服务器
    redisContext *context = redisConnect("127.0.0.1", 6379);
    if (context == NULL || context->err) {
        if (context) {
            std::cerr << "Error: " << context->errstr << std::endl;
            redisFree(context);
        } else {
            std::cerr << "Can't allocate redis context" << std::endl;
        }
        return 1;
    }

    // 假设我们从大数据平台获取了一批数据
    std::vector<std::string> data = {"data1", "data2", "data3"};

    for (const auto& item : data) {
        // 将数据存储在 Redis 中
        redisCommand(context, "LPUSH %s %s", "data_list", item.c_str());
    }

    // 从 Redis 中读取数据并进行 AI 分析
    redisReply *reply = (redisReply *)redisCommand(context, "LRANGE %s 0 -1", "data_list");
    if (reply->type == REDIS_REPLY_ARRAY) {
        for (size_t i = 0; i < reply->elements; i++) {
            std::string data_item = reply->element[i]->str;
            // 调用 AI 模型进行分析
            std::string result = ai_model::analyze(data_item);
            std::cout << "Data: " << data_item << ", Analysis Result: " << result << std::endl;
        }
    }
    freeReplyObject(reply);

    // 断开连接
    redisFree(context);
    return 0;
}

在这个示例中,我们首先将一批数据存储在 Redis 的列表 data_list 中,然后从列表中读取数据,并调用 AI 模型对数据进行分析。通过这种方式,我们可以实现一个简单的实时数据处理系统。

5.实际应用案例分析

为了更好地理解上述技术在实际中的应用,我们来分析几个具体的应用案例。

案例一:实时推荐系统

实时推荐系统是电子商务网站和社交媒体平台中的重要组成部分。它通过分析用户的行为数据,实时推荐个性化的内容。以下是一个简单的实时推荐系统的实现思路:

  1. 数据采集:使用 C++ 程序从用户行为日志中提取数据,如浏览记录、点击记录等。
  2. 数据存储:将用户行为数据存储在 Redis 中,方便快速访问。
  3. 实时分析:使用 AI 模型对用户行为数据进行实时分析,生成个性化的推荐列表。
  4. 结果展示:将推荐结果返回给用户,并更新推荐模型。

下面是一个简化的示例代码,展示如何实现上述过程:

#include <iostream>
#include <hiredis/hiredis.h>
#include <vector>
#include "recommendation_model.h" // 假设我们有一个推荐模型的头文件

int main() {
    // 连接到 Redis 服务器
    redisContext *context = redisConnect("127.0.0.1", 6379);
    if (context == NULL || context->err) {
        if (context) {
            std::cerr << "Error: " << context->errstr << std::endl;
            redisFree(context);
        } else {
            std::cerr << "Can't allocate redis context" << std::endl;
        }
        return 1;
    }

    // 假设我们从用户行为日志中提取了一批数据
    std::vector<std::string> user_behavior = {"click:product1", "view:product2", "click:product3"};

    for (const auto& item : user_behavior) {
        // 将数据存储在 Redis 中
        redisCommand(context, "LPUSH %s %s", "user_behavior_list", item.c_str());
    }

    // 从 Redis 中读取数据并进行推荐分析
    redisReply *reply = (redisReply *)redisCommand(context, "LRANGE %s 0 -1", "user_behavior_list");
    if (reply->type == REDIS_REPLY_ARRAY) {
        for (size_t i = 0; i < reply->elements; i++) {
            std::string behavior_item = reply->element[i]->str;
            // 调用推荐模型进行分析
            std::string recommendation = recommendation_model::analyze(behavior_item);
            std::cout << "Behavior: " << behavior_item << ", Recommendation: " << recommendation << std::endl;
        }
    }
    freeReplyObject(reply);

    // 断开连接
    redisFree(context);
    return 0;
}

案例二:实时监控系统

实时监控系统广泛应用于工业控制、网络安全等领域。通过实时采集和分析监控数据,可以及时发现和处理异常情况。以下是一个简单的实时监控系统的实现思路:

  1. 数据采集:使用传感器或日志系统采集实时数据。
  2. 数据存储:将监控数据存储在 Redis 中,方便快速访问。
  3. 实时分析:使用 AI 模型对监控数据进行实时分析,检测异常情况。
  4. 报警和处理:根据分析结果触发报警,并进行相应的处理。

下面是一个简化的示例代码,展示如何实现上述过程:

#include <iostream>
#include <hiredis/hiredis.h>
#include <vector>
#include "anomaly_detection_model.h" // 假设我们有一个异常检测模型的头文件

int main() {
    // 连接到 Redis 服务器
    redisContext *context = redisConnect("127.0.0.1", 6379);
    if (context == NULL || context->err) {
        if (context) {
            std::cerr << "Error: " << context->errstr << std::endl;
            redisFree(context);
        } else {
            std::cerr << "Can't allocate redis context" << std::endl;
        }
        return 1;
    }

    // 假设我们从传感器中获取了一批监控数据
    std::vector<std::string> monitoring_data = {"temp:30", "temp:35", "temp:40"};

    for (const auto& item : monitoring_data) {
        // 将数据存储在 Redis 中
        redisCommand(context, "LPUSH %s %s", "monitoring_data_list", item.c_str());
    }

    // 从 Redis 中读取数据并进行异常检测
    redisReply *reply = (redisReply *)redisCommand(context, "LRANGE %s 0 -1", "monitoring_data_list");
    if (reply->type == REDIS_REPLY_ARRAY) {
        for (size_t i = 0; i < reply->elements; i++) {
            std::string data_item = reply->element[i]->str;
            // 调用异常检测模型进行分析
            bool is_anomaly = anomaly_detection_model::analyze(data_item);
            std::cout << "Data: " << data_item << ", Anomaly: " << (is_anomaly ? "Yes" : "No") << std::endl;
        }
    }
    freeReplyObject(reply);

    // 断开连接
    redisFree(context);
    return 0;
}

进一步优化与扩展

在实际应用中,我们可以进一步优化和扩展上述系统,以满足更复杂的需求。

性能优化

为了提高系统的性能,可以考虑以下优化措施:

  1. 多线程和并行处理:通过多线程或多进程技术,充分利用多核 CPU 的计算能力,提高数据处理速度。
  2. 批处理:将数据分批处理,减少每次处理的数据量,从而提高系统的响应速度。
  3. 缓存:使用 Redis 作为缓存,减少对数据库的访问次数,提高系统的性能。

以下是一个示例,展示如何使用多线程技术优化数据处理:

#include <iostream>
#include <hiredis/hiredis.h>
#include <vector>
#include <thread>

void process_data(const std::string& data) {
    // 模拟数据处理
    std::this_thread::sleep_for(std::chrono::milliseconds(100));
    std::cout << "Processed data: " << data << std::endl;
}

int main() {
    // 连接到 Redis 服务器
    redisContext *context = redisConnect("127.0.0.1", 6379);
    if (context == NULL || context->err) {
        if (context) {
            std::cerr << "Error: " << context->errstr << std::endl;
            redisFree(context);
        } else {
            std::cerr << "Can't allocate redis context" << std::endl;
        }
        return 1;
    }

    // 假设我们从数据源中获取了一批数据
    std::vector<std::string> data_list = {"data1", "data2", "data3", "data4", "data5"};

    // 启动多个线程并行处理数据
    std::vector<std::thread> threads;
    for (const auto& data : data_list) {
        threads.emplace_back(std::thread(process_data, data));
    }

    // 等待所有线程完成
    for (auto& t : threads) {
        t.join();
    }

    // 断开连接
    redisFree(context);
    return 0;
}

功能扩展

根据具体需求,可以进一步扩展系统的功能,例如:

  1. 数据清洗和预处理:在数据存储之前,对数据进行清洗和预处理,提高数据质量。
  2. 日志和监控:实现系统的日志记录和监控,方便问题排查和性能优化。
  3. 容错和恢复:增加容错和恢复机制,提高系统的可靠性和稳定性。

以下是一个示例,展示如何实现简单的数据清洗和预处理:

#include <iostream>
#include <hiredis/hiredis.h>
#include <vector>
#include <regex>

std::string clean_data(const std::string& data) {
    // 使用正则表达式去除数据中的无效字符
    std::regex e("[^a-zA-Z0-9]");
    return std::regex_replace(data, e, "");
}

int main() {
    // 连接到 Redis 服务器
    redisContext *context = redisConnect("127.0.0.1", 6379);
    if (context == NULL || context->err) {
        if (context) {
            std::cerr << "Error: " << context->errstr << std::endl;
            redisFree(context);
        } else {
            std::cerr << "Can't allocate redis context" << std::endl;
        }
        return 1;
    }

    // 假设我们从数据源中获取了一批数据
    std::vector<std::string> raw_data_list = {"data1#", "data2@", "data3$", "data4%", "data5^"};

    // 对数据进行清洗和预处理
    std::vector<std::string> cleaned_data_list;
    for (const auto& raw_data : raw_data_list) {
        cleaned_data_list.push_back(clean_data(raw_data));
    }

    // 将清洗后的数据存储在 Redis 中
    for (const auto& data : cleaned_data_list) {
        redisCommand(context, "LPUSH %s %s", "cleaned_data_list", data.c_str());
    }

    // 从 Redis 中读取数据并打印
    redisReply *reply = (redisReply *)redisCommand(context, "LRANGE %s 0 -1", "cleaned_data_list");
    if (reply->type == REDIS_REPLY_ARRAY) {
        for (size_t i = 0; i < reply->elements; i++) {
            std::cout << "Cleaned Data: " << reply->element[i]->str << std::endl;
        }
    }
    freeReplyObject(reply);

    // 断开连接
    redisFree(context);
    return 0;
}

6.总结

结合 C++ 和 Redis 构建高效的数据处理系统,并应用于人工智能和大数据领域。C++ 的高性能和 Redis 的高效存储,使得我们能够应对大规模数据处理的挑战,并为 AI 算法提供快速的数据访问支持。在实际应用中,可以根据具体需求进一步扩展和优化,以实现更复杂的功能。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1790211.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

Vue3-Ref Reactive toRef toRefs对比学习、标签ref与组件ref

响应式数据&#xff1a; Ref 作用&#xff1a;定义响应式变量。 语法&#xff1a;let xxx ref(初始值)(里面可以是任何规定内类型、数组等)。 返回值&#xff1a;一个RefImpl的实例对象&#xff0c;简称ref对象或ref&#xff0c;ref对象的value属性是响应式的。 注意点&am…

AndroidStudio中debug.keystore的创建和配置使用

1.如果没有debug.keystore,可以按照下面方法创建 首先在C:\Users\Admin\.android路径下打开cmd窗口 之后输入命令:keytool -genkey -v -keystore debug.keystore -alias androiddebugkey -keyalg RSA -validity 10000 输入两次密码(密码不可见,打码处随便填写没关系) 2.在build…

【DSP】xDAIS算法标准

1. 简介 在安装DSP开发支持包时&#xff0c;有名为 “xdais_7_21_01_07”文件夹。xDAIS全称: TMS320 DSP Algorithm Standard(算法标准)。39条规则&#xff0c;15条指南。参考文档。参考文章。 2. 三个层次 3.接口 XDAIS Digital Media。编解码引擎。VISA&#xff08;Video&…

PS的抠图算法原理剖析 1

以这个抠tree为例子 在PS里&#xff0c;操作过程是让你开启R G B三个通道 分别看一下 哪一个的对比最明显 上面的图片 树叶肯定B最少 天空B富裕&#xff0c;所以对比最明显的就用B通道 然后使用一些奇怪的函数&#xff0c;把texture.bbb这张图片变成黑白&#xff0c;纯黑纯白 那…

高通开发系列 - 借助libhybris库实现Linux系统中使用Andorid库

By: fulinux E-mail: fulinux@sina.com Blog: https://blog.csdn.net/fulinus 喜欢的盆友欢迎点赞和订阅! 你的喜欢就是我写作的动力! 返回:专栏总目录 目录 概述Android代码下载和编译aarch64开发环境libhybris下载和编译libhybris测试验证调用库中的函数概述 我主要是基于…

Renesas MCU之定时器计数功能应用

目录 概述 1 功能介绍 1.1 时钟相关配置 1.2 应用接口 2 FSP配置Project参数 2.1 软件版本信息 2.2 配置参数 2.3 项目生成 3 定时器功能代码实现 3.1 定时器初始化函数 3.2 定时器回调函数 4 功能测试 5 参考文档 概述 本文主要介绍Renesas MCU的定时器功能的基…

图像背景去除工具:removebg

文章目录 简介面向不同用户价格 简介 removebg&#xff0c;就是remove background&#xff0c;是一款智能图片背景去除工具。 在免费使用时&#xff0c;用到的是本地的CPU。我第一次试用时&#xff0c;图片刚上传之后&#xff0c;电脑的帧率便直线下降&#xff0c;鼠标都拖不…

[Redis]Zset类型

Zset有序集合相对于字符串、列表、哈希、集合来说会有一些陌生。 它保留了集合不能有重复成员的特点&#xff0c;但与集合不同的是&#xff0c;有序集合中的每个元素都有一个唯一的浮点类型的分数&#xff08;score&#xff09;与之关联&#xff0c;着使得有序集合中的元素是可…

深度学习笔记:2.Jupyter Notebook

Jupyter Notebook 常用操作快捷键魔法指令_jupyter notebook快捷键调用函数-CSDN博客https://blog.csdn.net/qq_26917905/article/details/137211336?ops_request_misc%257B%2522request%255Fid%2522%253A%2522171748112816800182160793%2522%252C%2522scm%2522%253A%25222014…

Redis 异常三连环

本文针对一种特殊情况下的Reids连环异常&#xff0c;分别是下面三种异常&#xff1a; NullPointerException: Cannot read the array length because “arg” is nullJedisDataException: ERR Protocol error: invalid bulk lengthJedisConnectionException: Unexpected end o…

产品经理的AI大模型实战指南:驾驭未来,引领创新

前言&#xff1a; 在数字化浪潮席卷全球的今天&#xff0c;AI大模型正以其惊人的潜力和速度&#xff0c;重塑着各行各业的生态。对于产品经理而言&#xff0c;如何在这场变革中站稳脚跟&#xff0c;甚至引领潮流&#xff0c;成为了一个亟待解决的问题。为此&#xff0c;我们特…

vue对图片进行裁剪

安装依赖&#xff1a; npm install cropperjs -save <template><div class"bigBox"><h3>预览</h3><!-- 裁剪按钮--><el-button click"sureSava">裁剪</el-button><el-button click"confirm">确…

前端 Web 与原生应用端 WebView 通信交互 - HarmonyOS Next

基于鸿蒙 HarmonyOS Next 与前端 Vue 通信交互相关小结; DevEco Studio NEXT Developer Preview2 Vue js 两端相互拟定好协议后,通过前端页面的点击事件,将所需的数据传输给原生移动端组件方法中,处理后将消息回传至前端. 根据官方文档的案例尝试,但没成功 ... 后经过几经尝试…

数字智能数字人直播带货软件系统 实现真人形象的1:1克隆 前后端分离 带完整的安装代码包以及搭建教程

系统概述 数字智能数字人直播带货小程序源码系统是一套集人工智能、3D建模、云计算等技术于一体的综合性解决方案。该系统通过深度学习算法&#xff0c;能够实现对真人形象的精准捕捉和1:1克隆&#xff0c;使数字人在直播过程中呈现出与真人无异的表现力。同时&#xff0c;系统…

YOLO-Worldv2两分钟快速部署

本次部署使用的框架基于ultralytics&#xff0c; 并且已经集成最新版本的YOLOv8框架&#xff1a; 一键环境配置 pip install ultralytics基础使用 训练 from ultralytics import YOLOWorld model YOLOWorld(yolov8x-worldv2.pt) results model.train(datacoco8.yaml, epo…

第三方软件测试报告模版分享

第三方软件测试报告是由独立的第三方机构进行的软件测试后所生成的详细报告。它包含了软件测试的各个方面&#xff0c;包括功能测试、性能测试、安全测试等。通过第三方的客观评估&#xff0c;该报告能够全面、准确地反映出软件的优点与缺陷&#xff0c;为软件开发商和用户提供…

数据动态变化时实现多选及回显

<template><el-dialog title"设置权限" :visible.sync"showDialog" :close-on-click-modal"false" :append-to-body"true" width"800px"><div v-loading"loading"><el-radio-group v-model&…

IntelliJ IDEA智能编程插件AI Assistant

IntelliJ IDEA集成开发工具最新版本提供了人工智能AI编程助手的插件&#xff0c;AI Assistant使用手册的文档地址是AI Assistant | IntelliJ IDEA Documentation AI Assistant提供以下的编程能力以及工具特性&#xff1a; 与AI Assistant聊天&#xff0c;提问与项目相关或者与…

快递单信息抽取【三】--五条标注数据提高准确率,仅需五条标注样本,快速完成快递单信息任务

五条标注数据搞定快递单信息抽取 本项目将演示如何通过五条标注样本进行模型微调&#xff0c;快速且准确抽取快递单中的姓名、电话、省、市、区、详细地址等内容&#xff0c;形成结构化信息。辅助物流行业从业者进行有效信息的提取&#xff0c;从而降低客户填单的成本。 1. 任…

美国年轻人热衷床上“摆烂”,沃尔玛发掘床上用品新商机!

美国年轻人近年来热衷于床上“摆烂”生活方式&#xff0c;这反映了他们对舒适放松的追求和现代生活的压力。沃尔玛作为零售业巨头&#xff0c;敏锐地捕捉到这一市场变化&#xff0c;发现了床上用品的新商机。 美国年轻人忙碌中渴望宁静空间。床成为他们放松、逃离现实压力的理想…