“深度学习”学习日记。与学习有关的技巧--Bacth Normalization

news2025/1/16 21:55:04

2023.1.25

现在已经学习过了,如果我们设置了合适的权重初始值,则各层的激活值分布会呈现适当的广度,从而可以时神经网络模型顺利的进行学习。

而 batch normalization算法 的思想就是为了使得各层有适当的广度,“强制性”地调整激活值的分布。

 Batch Normalization算法:

这是一个提出自2015年的方法,但是已经广泛的应用于机器学习......

他的作用是调整各层激活函数进行正规化的层,即Bacth Normalization 层,所以将他插入在Affine层与ReLU层之间;

具体,在神经网络进行学习时,以mini-batch为单位,按mini-batch进行正规化(正规化:就是时数据分布均值为0、反差为1的正规化)

正规化数学公式:

\mu _{B}\leftarrow \frac{1}{m}\sum_{i=1}^{m}x_{i}\mu _{B}^{2}\leftarrow \frac{1}{m}\sum_{i=1}^{m}\left ( x_{i}-\mu _{B} \right )^{2}\hat{x_{i}}\leftarrow \frac{x_{i}-\mu _{B}}{\sqrt{\sigma _{B}^{2}+\xi }};其中 \xi 是个很小的值,防止除以0的情况 。

之后Batch Normalization层会对正规划的数据进行缩放和平移:y_{i} \leftarrow \gamma \hat{x_{i}} + \beta 

\gamma =1和 \beta = 0 是参数,然后经过学习调整到合适的值;

优点:

一、可以使学习快速进行;

二、不那么以来初始值;

三、可以抑制过拟合;

观察Batch Normalization的计算图:

 其反向操作比较复杂,并没有推导(教材上也没有推导)

运用MNIST数据集对Bacth Normalization的评估:

观察使用Batch Normalization层和不适用Batch Normalizaton层,会出现什么现象;

 进行了16次的对比,可以说使用了Bacth Normalization后,学习变得更快了。在不同的权重初始值的标准差为各种不同的值的时学习过程也做了实验;

事实是,如果没有一个好的初始值,神经网络的学习将难以进行;

通过使用Batch Norlization层 推动神经网络学习的进行。并且,对权重初始值变得 健壮(使得神经网络模型不那么依赖初始值)

实验代码:

import sys, os
from collections import OrderedDict
import numpy as np
import matplotlib.pyplot as plt
from dataset.mnist import load_mnist

sys.path.append(os.pardir)


def softmax(x):
    if x.ndim == 2:
        x = x.T
        x = x - np.max(x, axis=0)
        y = np.exp(x) / np.sum(np.exp(x), axis=0)
        return y.T

    x = x - np.max(x)
    return np.exp(x) / np.sum(np.exp(x))


def cross_entropy_error(y, t):
    if y.ndim == 1:
        t = t.reshape(1, t.size)
        y = y.reshape(1, y.size)

    if t.size == y.size:
        t = t.argmax(axis=1)

    batch_size = y.shape[0]
    return -np.sum(np.log(y[np.arange(batch_size), t] + 1e-7)) / batch_size


def sigmoid(x):
    return 1 / (1 + np.exp(-x))


class Relu:
    def __init__(self):
        self.mask = None

    def forward(self, x):
        self.mask = (x <= 0)
        out = x.copy()
        out[self.mask] = 0

        return out

    def backward(self, dout):
        dout[self.mask] = 0
        dx = dout

        return dx


class Sigmoid:
    def __init__(self):
        self.out = None

    def forward(self, x):
        out = sigmoid(x)
        self.out = out
        return out

    def backward(self, dout):
        dx = dout * (1.0 - self.out) * self.out

        return dx


class Affine:
    def __init__(self, W, b):
        self.W = W
        self.b = b

        self.x = None
        self.original_x_shape = None
        # 权重和偏置参数的导数
        self.dW = None
        self.db = None

    def forward(self, x):
        # 对应张量
        self.original_x_shape = x.shape
        x = x.reshape(x.shape[0], -1)
        self.x = x

        out = np.dot(self.x, self.W) + self.b

        return out

    def backward(self, dout):
        dx = np.dot(dout, self.W.T)
        self.dW = np.dot(self.x.T, dout)
        self.db = np.sum(dout, axis=0)

        dx = dx.reshape(*self.original_x_shape)  # 还原输入数据的形状(对应张量)
        return dx


class SoftmaxWithLoss:
    def __init__(self):
        self.loss = None
        self.y = None  # softmax的输出
        self.t = None  # 监督数据

    def forward(self, x, t):
        self.t = t
        self.y = softmax(x)
        self.loss = cross_entropy_error(self.y, self.t)

        return self.loss

    def backward(self, dout=1):
        batch_size = self.t.shape[0]
        if self.t.size == self.y.size:  # 监督数据是one-hot-vector的情况
            dx = (self.y - self.t) / batch_size
        else:
            dx = self.y.copy()
            dx[np.arange(batch_size), self.t] -= 1
            dx = dx / batch_size

        return dx


class Dropout:
    def __init__(self, dropout_ratio=0.5):
        self.dropout_ratio = dropout_ratio
        self.mask = None

    def forward(self, x, train_flg=True):
        if train_flg:
            self.mask = np.random.rand(*x.shape) > self.dropout_ratio
            return x * self.mask
        else:
            return x * (1.0 - self.dropout_ratio)

    def backward(self, dout):
        return dout * self.mask


class BatchNormalization:
    def __init__(self, gamma, beta, momentum=0.9, running_mean=None, running_var=None):
        self.gamma = gamma
        self.beta = beta
        self.momentum = momentum
        self.input_shape = None  # Conv层的情况下为4维,全连接层的情况下为2维

        # 测试时使用的平均值和方差
        self.running_mean = running_mean
        self.running_var = running_var

        # backward时使用的中间数据
        self.batch_size = None
        self.xc = None
        self.std = None
        self.dgamma = None
        self.dbeta = None

    def forward(self, x, train_flg=True):
        self.input_shape = x.shape
        if x.ndim != 2:
            N, C, H, W = x.shape
            x = x.reshape(N, -1)

        out = self.__forward(x, train_flg)

        return out.reshape(*self.input_shape)

    def __forward(self, x, train_flg):
        if self.running_mean is None:
            N, D = x.shape
            self.running_mean = np.zeros(D)
            self.running_var = np.zeros(D)

        if train_flg:
            mu = x.mean(axis=0)
            xc = x - mu
            var = np.mean(xc ** 2, axis=0)
            std = np.sqrt(var + 10e-7)
            xn = xc / std

            self.batch_size = x.shape[0]
            self.xc = xc
            self.xn = xn
            self.std = std
            self.running_mean = self.momentum * self.running_mean + (1 - self.momentum) * mu
            self.running_var = self.momentum * self.running_var + (1 - self.momentum) * var
        else:
            xc = x - self.running_mean
            xn = xc / ((np.sqrt(self.running_var + 10e-7)))

        out = self.gamma * xn + self.beta
        return out

    def backward(self, dout):
        if dout.ndim != 2:
            N, C, H, W = dout.shape
            dout = dout.reshape(N, -1)

        dx = self.__backward(dout)

        dx = dx.reshape(*self.input_shape)
        return dx

    def __backward(self, dout):
        dbeta = dout.sum(axis=0)
        dgamma = np.sum(self.xn * dout, axis=0)
        dxn = self.gamma * dout
        dxc = dxn / self.std
        dstd = -np.sum((dxn * self.xc) / (self.std * self.std), axis=0)
        dvar = 0.5 * dstd / self.std
        dxc += (2.0 / self.batch_size) * self.xc * dvar
        dmu = np.sum(dxc, axis=0)
        dx = dxc - dmu / self.batch_size

        self.dgamma = dgamma
        self.dbeta = dbeta

        return dx


def numerical_gradient(f, x):
    h = 1e-4  # 0.0001
    grad = np.zeros_like(x)

    it = np.nditer(x, flags=['multi_index'], op_flags=['readwrite'])
    while not it.finished:
        idx = it.multi_index
        tmp_val = x[idx]
        x[idx] = float(tmp_val) + h
        fxh1 = f(x)  # f(x+h)

        x[idx] = tmp_val - h
        fxh2 = f(x)  # f(x-h)
        grad[idx] = (fxh1 - fxh2) / (2 * h)

        x[idx] = tmp_val  # 还原值
        it.iternext()

    return grad


class MultiLayerNetExtend:
    def __init__(self, input_size, hidden_size_list, output_size,
                 activation='relu', weight_init_std='relu', weight_decay_lambda=0,
                 use_dropout=False, dropout_ration=0.5, use_batchnorm=False):
        self.input_size = input_size
        self.output_size = output_size
        self.hidden_size_list = hidden_size_list
        self.hidden_layer_num = len(hidden_size_list)
        self.use_dropout = use_dropout
        self.weight_decay_lambda = weight_decay_lambda
        self.use_batchnorm = use_batchnorm
        self.params = {}

        # 初始化权重
        self.__init_weight(weight_init_std)

        # 生成层
        activation_layer = {'sigmoid': Sigmoid, 'relu': Relu}
        self.layers = OrderedDict()
        for idx in range(1, self.hidden_layer_num + 1):
            self.layers['Affine' + str(idx)] = Affine(self.params['W' + str(idx)],
                                                      self.params['b' + str(idx)])
            if self.use_batchnorm:
                self.params['gamma' + str(idx)] = np.ones(hidden_size_list[idx - 1])
                self.params['beta' + str(idx)] = np.zeros(hidden_size_list[idx - 1])
                self.layers['BatchNorm' + str(idx)] = BatchNormalization(self.params['gamma' + str(idx)],
                                                                         self.params['beta' + str(idx)])

            self.layers['Activation_function' + str(idx)] = activation_layer[activation]()

            if self.use_dropout:
                self.layers['Dropout' + str(idx)] = Dropout(dropout_ration)

        idx = self.hidden_layer_num + 1
        self.layers['Affine' + str(idx)] = Affine(self.params['W' + str(idx)], self.params['b' + str(idx)])

        self.last_layer = SoftmaxWithLoss()

    def __init_weight(self, weight_init_std):
        all_size_list = [self.input_size] + self.hidden_size_list + [self.output_size]
        for idx in range(1, len(all_size_list)):
            scale = weight_init_std
            if str(weight_init_std).lower() in ('relu', 'he'):
                scale = np.sqrt(2.0 / all_size_list[idx - 1])  # 使用ReLU的情况下推荐的初始值
            elif str(weight_init_std).lower() in ('sigmoid', 'xavier'):
                scale = np.sqrt(1.0 / all_size_list[idx - 1])  # 使用sigmoid的情况下推荐的初始值
            self.params['W' + str(idx)] = scale * np.random.randn(all_size_list[idx - 1], all_size_list[idx])
            self.params['b' + str(idx)] = np.zeros(all_size_list[idx])

    def predict(self, x, train_flg=False):
        for key, layer in self.layers.items():
            if "Dropout" in key or "BatchNorm" in key:
                x = layer.forward(x, train_flg)
            else:
                x = layer.forward(x)

        return x

    def loss(self, x, t, train_flg=False):
        y = self.predict(x, train_flg)

        weight_decay = 0
        for idx in range(1, self.hidden_layer_num + 2):
            W = self.params['W' + str(idx)]
            weight_decay += 0.5 * self.weight_decay_lambda * np.sum(W ** 2)

        return self.last_layer.forward(y, t) + weight_decay

    def accuracy(self, X, T):
        Y = self.predict(X, train_flg=False)
        Y = np.argmax(Y, axis=1)
        if T.ndim != 1: T = np.argmax(T, axis=1)

        accuracy = np.sum(Y == T) / float(X.shape[0])
        return accuracy

    def numerical_gradient(self, X, T):
        loss_W = lambda W: self.loss(X, T, train_flg=True)

        grads = {}
        for idx in range(1, self.hidden_layer_num + 2):
            grads['W' + str(idx)] = numerical_gradient(loss_W, self.params['W' + str(idx)])
            grads['b' + str(idx)] = numerical_gradient(loss_W, self.params['b' + str(idx)])

            if self.use_batchnorm and idx != self.hidden_layer_num + 1:
                grads['gamma' + str(idx)] = numerical_gradient(loss_W, self.params['gamma' + str(idx)])
                grads['beta' + str(idx)] = numerical_gradient(loss_W, self.params['beta' + str(idx)])

        return grads

    def gradient(self, x, t):
        # forward
        self.loss(x, t, train_flg=True)

        # backward
        dout = 1
        dout = self.last_layer.backward(dout)

        layers = list(self.layers.values())
        layers.reverse()
        for layer in layers:
            dout = layer.backward(dout)

        # 设定
        grads = {}
        for idx in range(1, self.hidden_layer_num + 2):
            grads['W' + str(idx)] = self.layers['Affine' + str(idx)].dW + self.weight_decay_lambda * self.params[
                'W' + str(idx)]
            grads['b' + str(idx)] = self.layers['Affine' + str(idx)].db

            if self.use_batchnorm and idx != self.hidden_layer_num + 1:
                grads['gamma' + str(idx)] = self.layers['BatchNorm' + str(idx)].dgamma
                grads['beta' + str(idx)] = self.layers['BatchNorm' + str(idx)].dbeta

        return grads


class Adam:
    def __init__(self, lr=0.001, beta1=0.9, beta2=0.999):
        self.lr = lr
        self.beta1 = beta1
        self.beta2 = beta2
        self.iter = 0
        self.m = None
        self.v = None

    def update(self, params, grads):
        if self.m is None:
            self.m, self.v = {}, {}
            for key, val in params.items():
                self.m[key] = np.zeros_like(val)
                self.v[key] = np.zeros_like(val)

        self.iter += 1
        lr_t = self.lr * np.sqrt(1.0 - self.beta2 ** self.iter) / (1.0 - self.beta1 ** self.iter)

        for key in params.keys():
            # self.m[key] = self.beta1*self.m[key] + (1-self.beta1)*grads[key]
            # self.v[key] = self.beta2*self.v[key] + (1-self.beta2)*(grads[key]**2)
            self.m[key] += (1 - self.beta1) * (grads[key] - self.m[key])
            self.v[key] += (1 - self.beta2) * (grads[key] ** 2 - self.v[key])

            params[key] -= lr_t * self.m[key] / (np.sqrt(self.v[key]) + 1e-7)


class SGD:
    def __init__(self, lr=0.01):
        self.lr = lr

    def update(self, params, grads):
        for key in params.keys():
            params[key] -= self.lr * grads[key]


(x_train, t_train), (x_test, t_test) = load_mnist(normalize=True)

# 减少学习数据
x_train = x_train[:1000]
t_train = t_train[:1000]

max_epochs = 20
train_size = x_train.shape[0]
batch_size = 100
learning_rate = 0.01


def __train(weight_init_std):
    bn_network = MultiLayerNetExtend(input_size=784, hidden_size_list=[100, 100, 100, 100, 100], output_size=10,
                                     weight_init_std=weight_init_std, use_batchnorm=True)
    network = MultiLayerNetExtend(input_size=784, hidden_size_list=[100, 100, 100, 100, 100], output_size=10,
                                  weight_init_std=weight_init_std)
    optimizer = SGD(lr=learning_rate)

    train_acc_list = []
    bn_train_acc_list = []

    iter_per_epoch = max(train_size / batch_size, 1)
    epoch_cnt = 0

    for i in range(1000000000):
        batch_mask = np.random.choice(train_size, batch_size)
        x_batch = x_train[batch_mask]
        t_batch = t_train[batch_mask]

        for _network in (bn_network, network):
            grads = _network.gradient(x_batch, t_batch)
            optimizer.update(_network.params, grads)

        if i % iter_per_epoch == 0:
            train_acc = network.accuracy(x_train, t_train)
            bn_train_acc = bn_network.accuracy(x_train, t_train)
            train_acc_list.append(train_acc)
            bn_train_acc_list.append(bn_train_acc)

            print("epoch:" + str(epoch_cnt) + " | " + str(train_acc) + " - " + str(bn_train_acc))

            epoch_cnt += 1
            if epoch_cnt >= max_epochs:
                break

    return train_acc_list, bn_train_acc_list


# 3.绘制图形==========
weight_scale_list = np.logspace(0, -4, num=16)
x = np.arange(max_epochs)

for i, w in enumerate(weight_scale_list):
    print("============== " + str(i + 1) + "/16" + " ==============")
    train_acc_list, bn_train_acc_list = __train(w)

    plt.subplot(4, 4, i + 1)
    plt.title("W:" + str(w))
    if i == 15:
        plt.plot(x, bn_train_acc_list, label='Batch Normalization', markevery=2)
        plt.plot(x, train_acc_list, linestyle="--", label='Normal(without BatchNorm)', markevery=2)
    else:
        plt.plot(x, bn_train_acc_list, markevery=2)
        plt.plot(x, train_acc_list, linestyle="--", markevery=2)

    plt.ylim(0, 1.0)
    if i % 4:
        plt.yticks([])
    else:
        plt.ylabel("accuracy")
    if i < 12:
        plt.xticks([])
    else:
        plt.xlabel("epochs")
    plt.legend(loc='lower right')

plt.show()

MNIST数据集的导入代码:

代码需要在一个命名为命名为dataset的文件夹下命名为mnist,并且与上个代码在同一个文件夹;

# coding: utf-8
try:
    import urllib.request
except ImportError:
    raise ImportError('You should use Python 3.x')
import os.path
import gzip
import pickle
import os
import numpy as np


url_base = 'http://yann.lecun.com/exdb/mnist/'
key_file = {
    'train_img':'train-images-idx3-ubyte.gz',
    'train_label':'train-labels-idx1-ubyte.gz',
    'test_img':'t10k-images-idx3-ubyte.gz',
    'test_label':'t10k-labels-idx1-ubyte.gz'
}

dataset_dir = os.path.dirname(os.path.abspath(__file__))
save_file = dataset_dir + "/mnist.pkl"

train_num = 60000
test_num = 10000
img_dim = (1, 28, 28)
img_size = 784


def _download(file_name):
    file_path = dataset_dir + "/" + file_name
    
    if os.path.exists(file_path):
        return

    print("Downloading " + file_name + " ... ")
    urllib.request.urlretrieve(url_base + file_name, file_path)
    print("Done")
    
def download_mnist():
    for v in key_file.values():
       _download(v)
        
def _load_label(file_name):
    file_path = dataset_dir + "/" + file_name
    
    print("Converting " + file_name + " to NumPy Array ...")
    with gzip.open(file_path, 'rb') as f:
            labels = np.frombuffer(f.read(), np.uint8, offset=8)
    print("Done")
    
    return labels

def _load_img(file_name):
    file_path = dataset_dir + "/" + file_name
    
    print("Converting " + file_name + " to NumPy Array ...")    
    with gzip.open(file_path, 'rb') as f:
            data = np.frombuffer(f.read(), np.uint8, offset=16)
    data = data.reshape(-1, img_size)
    print("Done")
    
    return data
    
def _convert_numpy():
    dataset = {}
    dataset['train_img'] =  _load_img(key_file['train_img'])
    dataset['train_label'] = _load_label(key_file['train_label'])    
    dataset['test_img'] = _load_img(key_file['test_img'])
    dataset['test_label'] = _load_label(key_file['test_label'])
    
    return dataset

def init_mnist():
    download_mnist()
    dataset = _convert_numpy()
    print("Creating pickle file ...")
    with open(save_file, 'wb') as f:
        pickle.dump(dataset, f, -1)
    print("Done!")

def _change_one_hot_label(X):
    T = np.zeros((X.size, 10))
    for idx, row in enumerate(T):
        row[X[idx]] = 1
        
    return T
    

def load_mnist(normalize=True, flatten=True, one_hot_label=False):
    """读入MNIST数据集
    
    Parameters
    ----------
    normalize : 将图像的像素值正规化为0.0~1.0
    one_hot_label : 
        one_hot_label为True的情况下,标签作为one-hot数组返回
        one-hot数组是指[0,0,1,0,0,0,0,0,0,0]这样的数组
    flatten : 是否将图像展开为一维数组
    
    Returns
    -------
    (训练图像, 训练标签), (测试图像, 测试标签)
    """
    if not os.path.exists(save_file):
        init_mnist()
        
    with open(save_file, 'rb') as f:
        dataset = pickle.load(f)
    
    if normalize:
        for key in ('train_img', 'test_img'):
            dataset[key] = dataset[key].astype(np.float32)
            dataset[key] /= 255.0
            
    if one_hot_label:
        dataset['train_label'] = _change_one_hot_label(dataset['train_label'])
        dataset['test_label'] = _change_one_hot_label(dataset['test_label'])
    
    if not flatten:
         for key in ('train_img', 'test_img'):
            dataset[key] = dataset[key].reshape(-1, 1, 28, 28)

    return (dataset['train_img'], dataset['train_label']), (dataset['test_img'], dataset['test_label']) 


if __name__ == '__main__':
    init_mnist()

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/178316.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

No package ‘vips‘ found系列问题解决方案

目录 系列报错集合 错误1 错误2 错误3 解决方案清单 系列报错集合 错误1 No package vips found Package vips was not found in the pkg-config search path. Perhaps you should add the directory containing vips.pc to the PKG_CONFIG_PATH environment variable N…

医疗实体及关系识别挑战赛

赛题概要 请本赛题排行榜前10的队友通过作品提交源代码&#xff0c;模型以及说明文档&#xff0c;截止时间为09/27/23:59:59.若文件过大&#xff0c;可发送至官网邮箱&#xff1a;AICompetitioniflytek.com。若截止时间内未提交&#xff0c;官方回通过电话联系相关选手&#x…

JavaEE8-Bean的生命周期

目录 1.Bean执行原理分析 2.Bean生命周期 2.1.实例化Bean&#xff1a;为Bean分配内存空间。&#xff08;相当于买房&#xff0c;从无到有&#xff09; 2.2.设置属性&#xff1a;Bean注入和装配。&#xff08;执行依赖类的注入&#xff1a;A需要使用B的方法&#xff0c;先初…

win32com操作word API精讲 第六集 Range(四)对齐和缩进

本课程《win32com操作word API精讲&项目实战》同步在B站、今日头条、视频号及本公众号发布。其中本平台以发布文字教程为主&#xff0c;所有平台ID均为&#xff1a;一灯编程 今天是大年初二&#xff0c;一灯在此祝愿各位朋友兔年吉祥&#xff0c;达成所想。 本节课主要讲解…

机器学习(六):模型评估

文章目录 模型评估 一、分类模型评估 二、 回归模型评估 三、拟合 1、欠拟合 2、过拟合 模型评估 模型评估是模型开发过程不可或缺的一部分。它有助于发现表达数据的最佳模型和所选模型将来工作的性能如何。 按照数据集的目标值不同&#xff0c;可以把模型评估分为分类…

Python信用卡欺诈检测 [TensorFlow]

Python信用卡欺诈检测 [TensorFlow] 提示&#xff1a;前言 Python 信用卡欺诈检测 提示&#xff1a;写完文章后&#xff0c;目录可以自动生成&#xff0c;如何生成可参考右边的帮助文档 文章目录Python信用卡欺诈检测 [TensorFlow]前言一、导入包二、加载数据三、加载数据四、 …

WebAssembly编译之(1)-asm.js及WebAssembly原理介绍

WebAssembly介绍及产生历程 1、什么是WebAssembly、为什么WASM&#xff1f; 我们知道Web的应用几乎涵盖了大半个互联网应用&#xff1b;越多越多的Web应用层出不穷&#xff0c;而然Web最致命的劣势就是其在浏览其的运行效率特忙&#xff0c;尤其是web游戏的体验不佳。 而Web…

ubuntu安装Espeak实现tts文字转语音

目录参考一、介绍二、安装安装包安装查看安装版本和espeak-data路径直接尝试安装中文包三、生产wav文件四、代码引入参考 ubuntu完美安装espeak支持中文和粤语 不再报错:Full dictionary is not installed for ‘zh’ 一、介绍 **用途&#xff1a;**可识别多语言的朗读软件 …

JavaEE day4 初识CSS

HTML如果说是前端网页中的骨架 那么CSS就是用来对骨架进行排版美化的、 CSS全称为 Cascading Style Sheets 层叠样式表 预备知识&#xff1a; html中的所有元素都有两个通用的属性&#xff1a;id和class id&#xff1a;唯一标识符&#xff0c;一个html组成元素中&#xff…

Day07 C++STL入门基础知识四——vector容器(上) 基本概念-构造函数-赋值操作-容量大小【全面深度剖析+例题代码展示】

Leave no stone unturned. 竭尽全力 文章目录1. 基本概念1.1 功能1.2 与普通数组相同点与不同点1.3 动态扩展2. 构造函数2.1 功能描述2.2 函数原型2.3 代码展示3. 赋值操作3.1 函数原型3.2 代码展示4. 容量及大小4.1 函数原型4.2 代码展示4.2.1 empty()4.2.1.1 代码展示4.2.1.2…

恶意代码分析实战 1 静态分析基础技术

1.1 Lab 1-1 对Lab01-01.exe和Lab01-01.dll进行分析 问题 将文件上传至http://www.VirusTotal.com进行分析并查看报告。文件匹配到了已有的反病毒软件特征吗? 首先查看Lab-01-01.exe。 然后查看Lab01-01.dll。 这两个文件应该都是恶意文件。 这些文件是什么时候编译的?…

20230125英语学习

Office Buzzwords You’re Using That Annoy All Your Co-workers 说话之道&#xff1a;避开办公室行话的“雷区” Joining a new office means having to learn how to communicate with your team.But in order to do that well, it sometimes means having to learn your …

索引优化示例

目录 1.单表优化 2.两表优化 3.三表优化 4.总结 1.单表优化 创建索引前 (1)先按照where条件创建索引 按照查询条件中的三个项目创建索引&#xff0c;并且索引中的项目存在顺序&#xff0c;分别是1,2和3。 (2)创建索引 type 变成了 range,这是可以忍受的。但是 extra 里使用…

恶意代码分析实战 4 识别汇编中的C代码结构

4.1 Lab06-01.exe 由main函数调用的唯一子过程中发现的主要代码结构是什么&#xff1f; 使用Strings进行查看&#xff0c;需要注意最后的这两个字符串&#xff0c;一个是“没有网”&#xff0c;另一个是“联网成功”。 IDA 中查看图结构。 明显是if-else结构。 位于0x4010…

进程间通信/管道/消息队列/共享内存/信号量

本文重点目标&#xff1a; ⭐进程间通信介绍⭐ ⭐管道⭐ ⭐消息队列⭐ ⭐共享内存⭐ ⭐信号量⭐ 1.进程间通信介绍 什么是通信&#xff1f; 通信指的是数据传输、资源共享、通知事件和进程控制。 ①数据传输&#xff1a;一个进程需要将它的数据发送给另一个进程 ②资源共享&a…

【GIS】高分辨率遥感影像智能解译

1 绪论 随着航空科技工业的不断成熟与发展&#xff0c;我国遥感卫星研制能力不断攀升&#xff0c;发射数量逐年提高&#xff0c;在轨运行的遥感卫星为社会生产及居民日常生活提供了巨大的支持与便利。我国目前同时在轨运行的遥感卫星数量已超过60颗&#xff0c;每天获取并传回…

LeetCode[990]等式方程式的可满足性

难度&#xff1a;中等题目&#xff1a;给定一个由表示变量之间关系的字符串方程组成的数组&#xff0c;每个字符串方程 equations[i]的长度为 4&#xff0c;并采用两种不同的形式之一&#xff1a;"ab"或 "a!b"。在这里&#xff0c;a 和 b 是小写字母&#…

【Python学习003】高效数据结构-列表

【Python学习003】高效数据结构-列表 我们的公众号是【朝阳三只大明白】&#xff0c;满满全是干货&#xff0c;分享近期的学习知识以及个人总结&#xff08;包括读研和IT&#xff09;&#xff0c;希望大家一起努力&#xff0c;一起加油&#xff01;求关注&#xff01;&#xf…

浏览器使用本地硬盘上的JS文档

网页通过<script>标记可以引入在线的js文档&#xff0c;只有把网页保存在本地硬盘才能使用相对路径引入本地js文档&#xff0c;普通浏览器难以实现在线页面上引入本地js文档。怎么解决这个问题呢&#xff1f;首先准备好需要引入的JS文档&#xff0c;可以是成熟的JS库&…

【docker概念和实践 4】(3)本地镜像提交到阿里云

一、说明 本篇讲述如何将自己制作的容器转化成镜像&#xff0c;再将镜像推送到远端阿里云上。 二、制造一个本地容器 2.1 从远端仓库拉取ubuntu镜像 使用镜像拉取语句&#xff1a; docker pull ubuntu:20.04 docker run -it ubuntu&#xff1a;20.04 bash 通过以上两句&…