ceres学习笔记(四)

news2025/1/10 7:51:12

前言:

学习了pose_graph_2d部分,因为先学习了3维的pose_graph_3d部分,所以这个就比较容易。简单来说就是se2和se3的区别。整个的运行逻辑和3维部分的pose_graph_3d部分是一样的,概括为:

1.设置好两个type,分别是poses和constrains的格式,并重写>>运算符;

2.是对于g2o文件的解析,和分字符输入到不同的容器中,这里部分的内容再read_g2o.h里面;

3.针对二维的角度划定范围[-pi and pi),这部分在normalize_angle.h里面;

4.针对角度的非常规计算,这部分在angle_local_parameterization.h里面;

5.对于残差部分的运算,这部分在pose_graph_2d_error_term.h里面;

6.最后的优化配置计算,main函数部分,在pose_graph_2d.cc里面。

官方doc说的很详细了:

Consider a robot moving in a 2-Dimensional plane. The robot has access to a set of sensors such as wheel odometry or a laser range scanner. From these raw measurements, we want to estimate the trajectory of the robot as well as build a map of the environment. In order to reduce the computational complexity of the problem, the pose graph approach abstracts the raw measurements away. Specifically, it creates a graph of nodes which represent the pose of the robot, and edges which represent the relative transformation (delta position and orientation) between the two nodes. The edges are virtual measurements derived from the raw sensor measurements, e.g. by integrating the raw wheel odometry or aligning the laser range scans acquired from the robot. A visualization of the resulting graph is shown below.

 The figure depicts the pose of the robot as the triangles, the measurements are indicated by the connecting lines, and the loop closure measurements are shown as dotted lines. Loop closures are measurements between non-sequential robot states and they reduce the accumulation of error over time. The following will describe the mathematical formulation of the pose graph problem.

 下面按前面概括的顺序学习源码。

一、配置poses和constrains数据格式

内容是types.h部分:

首先是Pose2d部分,

// The state for each vertex in the pose graph.
struct Pose2d {
  double x;
  double y;
  double yaw_radians;

  // The name of the data type in the g2o file format.
  static std::string name() { return "VERTEX_SE2"; }
};

数据结构比较简单,

一个x,一个y表示二维坐标;

一个yaw_radians表示旋转的角度,也就是方向;

然后一个成员函数返回"VERTEX_SE2",这是g2o文件中,记录点部分的title。

inline std::istream& operator>>(std::istream& input, Pose2d& pose) {
  input >> pose.x >> pose.y >> pose.yaw_radians;
  // Normalize the angle between -pi to pi.
  pose.yaw_radians = NormalizeAngle(pose.yaw_radians);
  return input;
}

这是重写了一个>>运算符,将运算符左侧的对象写入Pose2d数据结构生成的对象里面。并且把角度修正到-pi to pi范围内。

接下来是Constrain2d部分,

// The constraint between two vertices in the pose graph. The constraint is the
// transformation from vertex id_begin to vertex id_end.
struct Constraint2d {
  int id_begin;
  int id_end;

  double x;
  double y;
  double yaw_radians;

  // The inverse of the covariance matrix for the measurement. The order of the
  // entries are x, y, and yaw.
  Eigen::Matrix3d information;

  // The name of the data type in the g2o file format.
  static std::string name() { return "EDGE_SE2"; }
};

两个index,表示两个点的index;

x,y,yaw_radians表示这两个点的差值,在id_begin坐标系下,id_end与id_begin的差值;

信息矩阵information;

一个成员函数,返回"EDGE_SE2",它也是g2o文件中Constraint2d部分的title。

inline std::istream& operator>>(std::istream& input, Constraint2d& constraint) {
  input >> constraint.id_begin >> constraint.id_end >> constraint.x >>
      constraint.y >> constraint.yaw_radians >> constraint.information(0, 0) >>
      constraint.information(0, 1) >> constraint.information(0, 2) >>
      constraint.information(1, 1) >> constraint.information(1, 2) >>
      constraint.information(2, 2);

  // Set the lower triangular part of the information matrix.
  constraint.information(1, 0) = constraint.information(0, 1);
  constraint.information(2, 0) = constraint.information(0, 2);
  constraint.information(2, 1) = constraint.information(1, 2);

  // Normalize the angle between -pi to pi.
  constraint.yaw_radians = NormalizeAngle(constraint.yaw_radians);
  return input;
}

同样重写了>>运算符,将左侧的对象写入右侧的Constraint2d生成的对象中。

二、解析读取g2o文件的内容

内容在read_g2o.h中:

阅读点的部分:

// Reads a single pose from the input and inserts it into the map. Returns false
// if there is a duplicate entry.
template <typename Pose, typename Allocator>
bool ReadVertex(std::ifstream* infile,
                std::map<int, Pose, std::less<int>, Allocator>* poses) {
  int id;
  Pose pose;
  *infile >> id >> pose;

  // Ensure we don't have duplicate poses.
  if (poses->find(id) != poses->end()) {
    LOG(ERROR) << "Duplicate vertex with ID: " << id;
    return false;
  }
  (*poses)[id] = pose;

  return true;
}

首先定义了id和pose对象,先利用之前的重载输入运算符写入,然后判断是否有重复id,若没有则再写入到指针poses中去。

阅读边部分:

// Reads the contraints between two vertices in the pose graph
template <typename Constraint, typename Allocator>
void ReadConstraint(std::ifstream* infile,
                    std::vector<Constraint, Allocator>* constraints) {
  Constraint constraint;
  *infile >> constraint;

  constraints->push_back(constraint);
}

写入到constrains容器中去。

然后是整合部分ReadG2oFile函数:

template <typename Pose,
          typename Constraint,
          typename MapAllocator,
          typename VectorAllocator>
bool ReadG2oFile(const std::string& filename,
                 std::map<int, Pose, std::less<int>, MapAllocator>* poses,
                 std::vector<Constraint, VectorAllocator>* constraints) {
  CHECK(poses != NULL);
  CHECK(constraints != NULL);

  poses->clear();
  constraints->clear();

  std::ifstream infile(filename.c_str());
  if (!infile) {
    return false;
  }

  std::string data_type;
  while (infile.good()) {
    // Read whether the type is a node or a constraint.
    infile >> data_type;
    if (data_type == Pose::name()) {
      if (!ReadVertex(&infile, poses)) {
        return false;
      }
    } else if (data_type == Constraint::name()) {
      ReadConstraint(&infile, constraints);
    } else {
      LOG(ERROR) << "Unknown data type: " << data_type;
      return false;
    }

    // Clear any trailing whitespace from the line.
    infile >> std::ws;
  }

  return true;
}

这部分内容是就一个判断,是node就用ReadVertex处理,是constraint就用ReadConstraint处理。值得注意的是string中c_str()函数,它的作用是指向一个以空字符结尾的指针。用它返回的对象来进行这个判断。

三、对于旋转角度的规范

在normalize_angle.h中:

// Normalizes the angle in radians between [-pi and pi).
template <typename T>
inline T NormalizeAngle(const T& angle_radians) {
  // Use ceres::floor because it is specialized for double and Jet types.
  T two_pi(2.0 * M_PI);
  return angle_radians -
         two_pi * ceres::floor((angle_radians + T(M_PI)) / two_pi);
}

这部分就是把角度限制再-pi到pi之间,但这个ceres::floor的作用是什么,我没有找到资料。

四、针对角度的非常规计算

// Defines a local parameterization for updating the angle to be constrained in
// [-pi to pi).
class AngleLocalParameterization {
 public:
  template <typename T>
  bool operator()(const T* theta_radians,
                  const T* delta_theta_radians,
                  T* theta_radians_plus_delta) const {
    *theta_radians_plus_delta =
        NormalizeAngle(*theta_radians + *delta_theta_radians);

    return true;
  }

  static ceres::LocalParameterization* Create() {
    return (new ceres::AutoDiffLocalParameterization<AngleLocalParameterization,
                                                     1,
                                                     1>);
  }
};

构建角度更新,主要作用是theta_radians_plus_delta = theta_radians + delta_theta_radians。

 yaw_new = yaw + △yaw

五、对于残差部分构建

这部分内容在pose_graph_2d_error_term.h里面:

首先是对于旋转角度变换成2*2的旋转矩阵的函数实现:

template <typename T>
Eigen::Matrix<T, 2, 2> RotationMatrix2D(T yaw_radians) {
  const T cos_yaw = ceres::cos(yaw_radians);
  const T sin_yaw = ceres::sin(yaw_radians);

  Eigen::Matrix<T, 2, 2> rotation;
  rotation << cos_yaw, -sin_yaw, sin_yaw, cos_yaw;
  return rotation;
}

本来准备手写的,突然发现官方doc里面有?就直接用官方的了,

就是变换成这个矩阵。

然后就是正式的残差构建部分,结构PoseGraph2dErrorTerm:

 private:
  // The position of B relative to A in the A frame.
  const Eigen::Vector2d p_ab_;
  // The orientation of frame B relative to frame A.
  const double yaw_ab_radians_;
  // The inverse square root of the measurement covariance matrix.
  const Eigen::Matrix3d sqrt_information_;

定义了三个私有的成员变量,

p_ab_是b点在a坐标系下的坐标;

yaw_ab_radians_是b点旋转到a方向的角度变化;

sqrt_information_是协方差矩阵。

  PoseGraph2dErrorTerm(double x_ab,
                       double y_ab,
                       double yaw_ab_radians,
                       const Eigen::Matrix3d& sqrt_information)
      : p_ab_(x_ab, y_ab),
        yaw_ab_radians_(yaw_ab_radians),
        sqrt_information_(sqrt_information) {}

构造函数没什么好说的。

  template <typename T>
  bool operator()(const T* const x_a,
                  const T* const y_a,
                  const T* const yaw_a,
                  const T* const x_b,
                  const T* const y_b,
                  const T* const yaw_b,
                  T* residuals_ptr) const {
    const Eigen::Matrix<T, 2, 1> p_a(*x_a, *y_a);
    const Eigen::Matrix<T, 2, 1> p_b(*x_b, *y_b);

    Eigen::Map<Eigen::Matrix<T, 3, 1>> residuals_map(residuals_ptr);

    residuals_map.template head<2>() =
        RotationMatrix2D(*yaw_a).transpose() * (p_b - p_a) - p_ab_.cast<T>();
    residuals_map(2) = ceres::examples::NormalizeAngle(
        (*yaw_b - *yaw_a) - static_cast<T>(yaw_ab_radians_));

    // Scale the residuals by the square root information matrix to account for
    // the measurement uncertainty.
    residuals_map = sqrt_information_.template cast<T>() * residuals_map;

    return true;
  }

前面内容比较简单,解释以下核心部分residuals_map的计算,residuals_map是一个3*1的向量。

 它的具体形式如上图所示,下面是推导过程:

 是上图中最后矩阵的第一行第二个,t表示p。

这个residuals_map就是残差,所以前两行是计算位移的残差,就是estimated - measures的。后面一行是对于旋转角度的残差。

  static ceres::CostFunction* Create(double x_ab,
                                     double y_ab,
                                     double yaw_ab_radians,
                                     const Eigen::Matrix3d& sqrt_information) {
    return (new ceres::
                AutoDiffCostFunction<PoseGraph2dErrorTerm, 3, 1, 1, 1, 1, 1, 1>(
                    new PoseGraph2dErrorTerm(
                        x_ab, y_ab, yaw_ab_radians, sqrt_information)));
  }

定义了一个create函数,我觉得这里是为了方便优化部分的简洁。

六、优化配置和main函数部分

// Output the poses to the file with format: ID x y yaw_radians.
bool OutputPoses(const std::string& filename,
                 const std::map<int, Pose2d>& poses) {
  std::fstream outfile;
  outfile.open(filename.c_str(), std::istream::out);
  if (!outfile) {
    std::cerr << "Error opening the file: " << filename << '\n';
    return false;
  }
  for (std::map<int, Pose2d>::const_iterator poses_iter = poses.begin();
       poses_iter != poses.end();
       ++poses_iter) {
    const std::map<int, Pose2d>::value_type& pair = *poses_iter;
    outfile << pair.first << " " << pair.second.x << " " << pair.second.y << ' '
            << pair.second.yaw_radians << '\n';
  }
  return true;
}

生成一个txt文件来保存pose数据,这里的文件读写操作可以借鉴一下。

接下来是优化problem的配置:

// Constructs the nonlinear least squares optimization problem from the pose
// graph constraints.
void BuildOptimizationProblem(const std::vector<Constraint2d>& constraints,
                              std::map<int, Pose2d>* poses,
                              ceres::Problem* problem) {
  CHECK(poses != NULL);
  CHECK(problem != NULL);
  if (constraints.empty()) {
    LOG(INFO) << "No constraints, no problem to optimize.";
    return;
  }

  ceres::LossFunction* loss_function = NULL;
  ceres::LocalParameterization* angle_local_parameterization =
      AngleLocalParameterization::Create();

  for (std::vector<Constraint2d>::const_iterator constraints_iter =
           constraints.begin();
       constraints_iter != constraints.end();
       ++constraints_iter) {
    const Constraint2d& constraint = *constraints_iter;

    std::map<int, Pose2d>::iterator pose_begin_iter =
        poses->find(constraint.id_begin);
    CHECK(pose_begin_iter != poses->end())
        << "Pose with ID: " << constraint.id_begin << " not found.";
    std::map<int, Pose2d>::iterator pose_end_iter =
        poses->find(constraint.id_end);
    CHECK(pose_end_iter != poses->end())
        << "Pose with ID: " << constraint.id_end << " not found.";

    const Eigen::Matrix3d sqrt_information =
        constraint.information.llt().matrixL();
    // Ceres will take ownership of the pointer.
    ceres::CostFunction* cost_function = PoseGraph2dErrorTerm::Create(
        constraint.x, constraint.y, constraint.yaw_radians, sqrt_information);
    problem->AddResidualBlock(cost_function,
                              loss_function,
                              &pose_begin_iter->second.x,
                              &pose_begin_iter->second.y,
                              &pose_begin_iter->second.yaw_radians,
                              &pose_end_iter->second.x,
                              &pose_end_iter->second.y,
                              &pose_end_iter->second.yaw_radians);

    problem->SetParameterization(&pose_begin_iter->second.yaw_radians,
                                 angle_local_parameterization);
    problem->SetParameterization(&pose_end_iter->second.yaw_radians,
                                 angle_local_parameterization);
  }

  // The pose graph optimization problem has three DOFs that are not fully
  // constrained. This is typically referred to as gauge freedom. You can apply
  // a rigid body transformation to all the nodes and the optimization problem
  // will still have the exact same cost. The Levenberg-Marquardt algorithm has
  // internal damping which mitigate this issue, but it is better to properly
  // constrain the gauge freedom. This can be done by setting one of the poses
  // as constant so the optimizer cannot change it.
  std::map<int, Pose2d>::iterator pose_start_iter = poses->begin();
  CHECK(pose_start_iter != poses->end()) << "There are no poses.";
  problem->SetParameterBlockConstant(&pose_start_iter->second.x);
  problem->SetParameterBlockConstant(&pose_start_iter->second.y);
  problem->SetParameterBlockConstant(&pose_start_iter->second.yaw_radians);
}

下面来分析,

  CHECK(poses != NULL);
  CHECK(problem != NULL);
  if (constraints.empty()) {
    LOG(INFO) << "No constraints, no problem to optimize.";
    return;
  }

判断是否存在,跳过。

  ceres::LossFunction* loss_function = NULL;
  ceres::LocalParameterization* angle_local_parameterization =
      AngleLocalParameterization::Create();

设定无核函数,对于角度规范话的设定。

下面是核心部分,对于每个pose和constrains的加入:

  for (std::vector<Constraint2d>::const_iterator constraints_iter =
           constraints.begin();
       constraints_iter != constraints.end();
       ++constraints_iter) 

  用for循环遍历Constraint2d的vector容器,里面存放的是边的信息。

    const Constraint2d& constraint = *constraints_iter;

    std::map<int, Pose2d>::iterator pose_begin_iter =
        poses->find(constraint.id_begin);
    CHECK(pose_begin_iter != poses->end())
        << "Pose with ID: " << constraint.id_begin << " not found.";
    std::map<int, Pose2d>::iterator pose_end_iter =
        poses->find(constraint.id_end);
    CHECK(pose_end_iter != poses->end())
        << "Pose with ID: " << constraint.id_end << " not found.";

使用constraint局部变量来作为循环内的判断赋值等;

pose_begin_iter赋值为开始的index点;

pose_end_iter赋值为结束的index点,并判断是否存在。

    const Eigen::Matrix3d sqrt_information =
        constraint.information.llt().matrixL();

这里是将斜对称矩阵进行Eigen的LLT分解实现了Cholesky 分解,并赋值给sqrt_information变量。

    ceres::CostFunction* cost_function = PoseGraph2dErrorTerm::Create(
        constraint.x, constraint.y, constraint.yaw_radians, sqrt_information);

利用create函数构建costfunction,将上面的局部变量传入进去。

    problem->AddResidualBlock(cost_function,
                              loss_function,
                              &pose_begin_iter->second.x,
                              &pose_begin_iter->second.y,
                              &pose_begin_iter->second.yaw_radians,
                              &pose_end_iter->second.x,
                              &pose_end_iter->second.y,
                              &pose_end_iter->second.yaw_radians);

    problem->SetParameterization(&pose_begin_iter->second.yaw_radians,
                                 angle_local_parameterization);
    problem->SetParameterization(&pose_end_iter->second.yaw_radians,
                                 angle_local_parameterization);

AddResidualBlock进行problem部分的配置,SetParameterization是对于角度的不同要求的配置。

  std::map<int, Pose2d>::iterator pose_start_iter = poses->begin();
  CHECK(pose_start_iter != poses->end()) << "There are no poses.";
  problem->SetParameterBlockConstant(&pose_start_iter->second.x);
  problem->SetParameterBlockConstant(&pose_start_iter->second.y);
  problem->SetParameterBlockConstant(&pose_start_iter->second.yaw_radians);

固定第一个点不动。

最后是SolveOptimizationProblem部分:

// Returns true if the solve was successful.
bool SolveOptimizationProblem(ceres::Problem* problem) {
  CHECK(problem != NULL);

  ceres::Solver::Options options;
  options.max_num_iterations = 100;
  options.linear_solver_type = ceres::SPARSE_NORMAL_CHOLESKY;

  ceres::Solver::Summary summary;
  ceres::Solve(options, problem, &summary);

  std::cout << summary.FullReport() << '\n';

  return summary.IsSolutionUsable();
}

主要是配置options并开始优化计算输出结果等。

七、输出结果

进行修改成,并配置CMakeLists.txt文件,然后输入结果可视化。

选择另一个数据:

 可以看出变化还是比较明显。

对于CMakeLists.txt在多文件夹下的使用配置还是不太熟练,找个时间系统总结一下。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/172402.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

7、CenOS6安装Nginx

Nginx的安装与启动 什么是Nginx Nginx 是一款高性能的 http 服务器/反向代理服务器及电子邮件&#xff08;IMAP/POP3&#xff09;代理服务器。由俄罗斯的程序设计师伊戈尔西索夫&#xff08;Igor Sysoev&#xff09;所开发&#xff0c;官方测试 nginx 能够支支撑 5 万并发链接…

《早安隆回》的铁粉,深圳80后男子不计成本,收购袁树雄签名照

谁也没有想到&#xff0c;五十多岁并且离异多年的袁树雄&#xff0c;靠着一首《早安隆回》&#xff0c;一夜之间红遍大江南北。如今《早安隆回》这首歌曲&#xff0c;已经拥有了三百万流量&#xff0c;有人说袁树雄下辈子都吃喝不愁&#xff0c;他的前妻该后悔了。 《早安隆回》…

ue4c++日记4(控制pawn类的运动|创建游戏模式|)

目录 代码速查 调用数学公式 获取位置/设置位置 绑定玩家输入按键&#xff0c;UE4传值给函数进行处理 约束获得的值再输出 创建对象 对象绑定到xxx上 设定默认玩家 实例&#xff1a;sin函数实现往复运动 实例&#xff1a;删除c类 1.删掉cpp和.h文件 2.删编译好的文件B…

缓存Caffeine之W-TinyLFU淘汰测录

我们常见的缓存是基于内存的缓存&#xff0c;但是单机的内存是有限的&#xff0c;不能让缓存数据撑爆内存&#xff0c;所有需要缓存淘汰机制。https://mp.csdn.net/editor/html/115872837 中大概说明了LRU的缓存淘汰机制&#xff0c;以及基于LRU的著名实现guava cache。除了LRU…

Python学习笔记——类(面向对象)

Python中使用类&#xff08;class〕来实现面向对象编程。Python中的类, 具有面向对象编程的所有基本特征&#xff1a;允许多继承、派生类可以重写它父类的任何方法、方法可以调用父类中同名的方法, 对象可以包含任意数量和类型的数据成员。创建类Python中, 使用class语句来创建…

Python 第7章 文件与数据格式化 笔记1

编码&#xff1a;print(云.encode(utf8))print(b\xe4\xba\x91.decode(utf8))要注意代码的编码方式。7.1文件概述windows中一个文件的完标识&#xff1a;D:\Downloads\新建文本文档.txt依次是路径&#xff0c;文件名主干&#xff0c;拓展名。没有包含除了文本字符以外的其他数据…

【JavaEE初阶】第四节.多线程基础篇 Thread类的使用、线程的几个重要操作和状态

提示&#xff1a;文章写完后&#xff0c;目录可以自动生成&#xff0c;如何生成可参考右边的帮助文档 文章目录 前言 一、Thread类的常见构造方法 二、Thread 的几个常见属性 三、和线程相关的几个重要的操作 3.1 启动线程 - start() 3.2 中断线程 3.3 等待线程 - join() …

JDK 8新特性之基本发展史

目录 一&#xff1a;Java SE的发展历史 二&#xff1a;Open JDK来源 三&#xff1a;Open JDK 和 Oracle JDK的关系 四&#xff1a;Open JDK 官网介绍 小结 &#xff1a; 一&#xff1a;Java SE的发展历史 Sun公司在1991年成立了一个称为绿色计划( Green Project )的项目&a…

Ubuntu22.04 美化

一&#xff1a;安装软件 sudo apt install gnome-tweaks chrome-gnome-shell sudo apt install gtk2-engines-murrine gtk2-engines-pixbuf sudo apt install sassc optipng inkscape libcanberra-gtk-module libglib2.0-dev libxml2-utils 二&#xff1a;安装GNOME扩展插件…

Windows 卸载 Visual Studio Code、MinGW-w64、CMake

文章目录1.卸载 Visual Studio Code1.1 在控制面板中找到 Visual Studio Code 将其卸载1.2 删除之前安装过的插件1.3 删除用户信息和缓存信息2.卸载 MinGW-w642.1 删除之前解压出来的文件夹2.2 删除之前配置过的环境变量3.卸载 CMake3.1 删除之前解压出来的文件夹3.2 删除之前配…

无 Hadoop 环境部署 Kylin4

1相比于 Kylin 3.x&#xff0c;Kylin 4.0 实现了全新 spark 构建引擎和 parquet 存储&#xff0c;使 kylin 不依赖 hadoop 环境部署成为可能。无Hadoop环境也降低了运维成本&#xff0c;减少了系统资源占用。 以下操作基于centos7.6 单机版本 部署版本信息如下 JDK 1.8Hive …

【Javascript】面向对象编程,this,原型与原型链,类与实例,class,实现Map,stack,Queue ,Set

❤️ Author&#xff1a; 老九 ☕️ 个人博客&#xff1a;老九的CSDN博客 &#x1f64f; 个人名言&#xff1a;不可控之事 乐观面对 &#x1f60d; 系列专栏&#xff1a; 文章目录对象中的方法/thisthis使用bind函数原型原型链类与实例classclass语法补充Map实现Map实现stack实…

【国产GD32芯片解析中科微北斗+GPS模块经纬度数据详细教程-附完整代码工程】

国产GD32芯片解析中科微北斗GPS模块经纬度数据详细教程-附完整代码工程简介准备工作PC端需要用到的工具代码下载地址GD32F103C8T6最小系统板代码实现GD32串口引脚定义如下&#xff1a;串口的初始化串口0初始化代码&#xff1a;串口1初始化代码串口的输入串口0的输入代码如下&am…

非标准包 game.rgss3a 的打开方法 | 2023 年实测

写在前面&#xff1a;最近在玩 RPG 游戏&#xff0c;想拆一个 Game.rgss3a 包&#xff0c;在网上找了很久的拆包方法&#xff0c;感觉写的比较凌乱&#xff0c;我来给大家整理一下吧。不过我本人的技术能力也很差&#xff0c;不确定说的是不是对的&#xff0c;就当是给大家提供…

中国智造助推跨境电商企业迈向全球市场

现今&#xff0c;跨境电商行业发展的如火如荼&#xff0c;中国智造也在不断助推跨境电商企业迈向全球市场。业内人员在新常态下的思想也有了一些改变&#xff0c;现在的跨境电商都是“平台物流”&#xff0c;在物流环节&#xff0c;也需要我们的专业团队去进行整合&#xff0c;…

GD32F450寄存器和库函数

GD32F4xx用户手册 GD32F450xx数据手册 GD32F3x0固件库使用指南 一、寄存器介绍 1. 存储器映射表 GD32是一个32位的单片机&#xff0c;它的地址范围为2的32次方&#xff0c;也就是4GB的地址空间。 为了降低不同客户在相同应用时的软件复杂度&#xff0c;存储映射是按Corte…

python能做的100件事03-python爬虫

文章目录1. scrapy介绍2 新建爬虫项目3 新建蜘蛛文件4 运行爬虫5 爬取内容5.1分析网页结构5.2 关于Xpath解析5.3 接着解析电影数据5.4 下载缩略图5.5 完整代码6 最后说明本例基于python3和scrapy爬虫框架&#xff0c;不再介绍python的基础知识和爬虫的基本知识。1. scrapy介绍 …

制药企业的发展趋势--行业公司数据调研

制药行业是国家重点培育发展的战略产业。制药行业的发展对人民健康、医药科技和社会进步等方面都有着十分重要的作用。下面笔者将阐述近年来制药行业发展的现状及趋势&#xff0c;并对制药行业的研发、销售等多维度的信息进行展示与解读。中国制药企业现状目前&#xff0c;中国…

分享103个PHP源码,总有一款适合您

PHP源码 分享103个PHP源码&#xff0c;总有一款适合您 下面是文件的名字&#xff0c;我放了一些图片&#xff0c;文章里不是所有的图主要是放不下...&#xff0c; 103个PHP源码下载链接&#xff1a;https://pan.baidu.com/s/1_T5IzwgcntFuyqulehbSzQ?pwdv6ds 提取码&#…

vue-router 使用与原理分析

简介 Vue Router 是Vue.js的官方路由。与Vue.js核心深度集成&#xff0c;让用Vue.js构建单页应用&#xff08;SPA&#xff09;变得更加简单。 使用 创建 1、在安装好Vue Router依赖后&#xff0c;在App.vue中引入router-view&#xff0c;它是渲染的容器 <div id"…