Qt图像处理技术十:得到QImage图像的高斯模糊

news2024/11/15 12:11:50

效果图

参数为5

在这里插入图片描述

参数为20

在这里插入图片描述

原理

高斯模糊使用正态分布来分配周围像素的权重。具体来说,距离中心点越近的像素对最终结果的影响越大,权重也越高;随着距离的增加,权重逐渐减小。
这种权重分配方式确保了图像在模糊处理时,边缘信息得到相对较好的保留。

构建高斯核, 实现归一化,然后分别对水平方向模糊和垂直方向模糊

源码

// 高斯模糊函数
QImage applyGaussianBlur(const QImage &oldimage, int radius)
{
    QImage image(oldimage);
    if (image.isNull() || radius <= 0)
        return QImage();

    QImage resultImage = image;
    const int size = radius * 2 + 1;
    const int sigma = radius / 2;
    const double sigmaSq = sigma * sigma;
    QVector<double> kernel(size);

    // 构建高斯核
    double sum = 0.0;
    for (int i = -radius; i <= radius; ++i)
    {
        double value = exp(-(i * i) / (2 * sigmaSq)) / (sqrt(2 * M_PI) * sigma);
        kernel[i + radius] = value;
        sum += value;
    }

    // 归一化
    for (int i = 0; i < size; ++i)
    {
        kernel[i] /= sum;
    }

    // 水平方向模糊
    for (int y = 0; y < image.height(); ++y)
    {
        for (int x = radius; x < image.width() - radius; ++x)
        {
            double red = 0, green = 0, blue = 0;
            for (int i = -radius; i <= radius; ++i)
            {
                QRgb pixel = image.pixel(x + i, y);
                red += qRed(pixel) * kernel[i + radius];
                green += qGreen(pixel) * kernel[i + radius];
                blue += qBlue(pixel) * kernel[i + radius];
            }
            resultImage.setPixel(x, y, qRgb(red, green, blue));
        }
    }

    // 垂直方向模糊
    for (int x = 0; x < image.width(); ++x)
    {
        for (int y = radius; y < image.height() - radius; ++y)
        {
            double red = 0, green = 0, blue = 0;
            for (int i = -radius; i <= radius; ++i)
            {
                QRgb pixel = resultImage.pixel(x, y + i);
                red += qRed(pixel) * kernel[i + radius];
                green += qGreen(pixel) * kernel[i + radius];
                blue += qBlue(pixel) * kernel[i + radius];
            }
            image.setPixel(x, y, qRgb(red, green, blue));
        }
    }
    return image;
}

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1717572.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

Docker(Centos7+)

先确定是否 Centos 7 及以上的版本 查看是否 ping 通外网 linux centos7运行下面的代码&#xff0c;基本上都可以正常安装 # 删除之前的docker残留 yum -y remove docker*yum install -y yum-utilsyum-config-manager --add-repo http://mirrors.aliyun.com/docker-ce/linux/…

中草药识别系统Python+深度学习人工智能+TensorFlow+卷积神经网络算法模型

一、介绍 中草药识别系统。本系统基于TensorFlow搭建卷积神经网络算法&#xff08;ResNet50算法&#xff09;通过对10中常见的中草药图片数据集&#xff08;‘丹参’, ‘五味子’, ‘山茱萸’, ‘柴胡’, ‘桔梗’, ‘牡丹皮’, ‘连翘’, ‘金银花’, ‘黄姜’, ‘黄芩’&…

我给线程池管理框架hippo4j找bug

1 虚拟机参数不生效 hippo4j的docker启动脚本位于 docker/docker-startup.sh 。从下图可以看到 JAVA_OPT放在了jar包名 hippo4j-server.jar之后&#xff0c;而只有项目参数才放在jar包名之后。 实际上这里JAVA_OPT中包含虚拟机参数&#xff0c;而虚拟机参数要放在jar包名之前…

windows配置dns访问git , 加快访问速度保姆级教程

设置 DNS 访问 Git 需要修改电脑的 DNS 配置。下面是具体的操作流程&#xff1a; 第一步&#xff1a;打开命令提示符或终端窗口 在 Windows 系统中&#xff0c;可以按下 Win R 组合键&#xff0c;然后输入 “cmd”&#xff0c;按下 Enter 键打开命令提示符窗口。在 macOS 或 …

【tomcat 源码分析总结】

文章目录 tomcat官网路径目录结构介绍&#xff1a;Tomcat 系统架构 和 原理剖析http 的请求的处理过程 Tomcat 请求处理大致过程 tomcat官网路径 目录结构介绍&#xff1a; confserver.xml 端口的指定tomcat-users.xml 角色web.xml : tomcat 全局的xmllogging.properties 日志…

深入剖析 Kubernetes 原生 Sidecar 容器

1 Sidecar 容器的概念 sidecar 容器的概念在 Kubernetes 早期就已经存在。一个明显的例子就是 2015 年的这篇 Kubernetes 博客文章&#xff0c;其中提到了 sidecar 模式。多年来&#xff0c;sidecar 模式在应用程序中变得越来越普遍&#xff0c;使用场景也变得更加多样化。 其…

华为官网的自助申诉

代码&#xff1a;如下 <!DOCTYPE html> <html lang"en"> <head> <meta charset"UTF-8"> <meta name"viewport" content"widthdevice-width, initial-scale1.0"> <title>Document</title> …

乐观锁 or 悲观锁 你怎么选?

你有没有听过这样一句话&#xff1a;悲观者正确&#xff0c;乐观者成功​。那么今天我来分享下什么是乐观锁​和悲观锁。 乐观锁和悲观锁有什么区别&#xff0c;它们什么场景会用 乐观锁 乐观锁基于这样的假设&#xff1a;多个事务在同一时间对同一数据对象进行操作的可能性很…

Qt图像处理技术九:得到QImage图像的灰度直方图

效果 原理 得到灰度化值&#xff0c;将灰度化的值带入0-255内&#xff0c;增加&#xff0c;得到可视化图形 源码 // 绘制直方图 QImage drawHistogram(const QImage &image) {QVector<int> histogram(256, 0);// 计算图像的灰度直方图for (int y 0; y < image…

【linux】在linux操作系统下快速熟悉开发环境并上手开发工具——体验不一样的开发之旅

个人主页&#xff1a;东洛的克莱斯韦克-CSDN博客 祝福语&#xff1a;愿你拥抱自由的风 目录 vim编辑器 Linux编译器&#xff1a;gcc/g使用 gcc和g的选项 编译过程 动静态库的链接 Linux项目的自动化构建 生成可执行程序 清理可执行程序 Linux调试器-gdb使用 git和git…

【嵌入式硬件】DRV8874电机驱动

目录 1 芯片介绍 1.1 特性简介 1.2 引脚配置 1.3 最佳运行条件 2 详细说明 2.1 PMODE配置控制模式 2.1.1 PH/EN 控制模式 2.1.2 PWM 控制模式 2.1.3 独立半桥控制模式 2.2 电流感测和调节 2.2.1 IPROPI电流感测 2.2.2 IMODE电流调节 3.应用 3.1设计要求 3.2 设计…

C# FTP/SFTP 详解及连接 FTP/SFTP 方式示例汇总

文章目录 1、FTP/SFTP基础知识FTPSFTP 2、FTP连接示例3、SFTP连接示例4、总结 在软件开发中&#xff0c;文件传输是一个常见的需求。尤其是在不同的服务器之间传输文件时&#xff0c;FTP&#xff08;文件传输协议&#xff09;和SFTP&#xff08;安全文件传输协议&#xff09;成…

Scheduling Game Event

在游戏中管理事件&#xff1a;动画更新、对象碰撞等&#xff0c;如果没有清晰的理解事件是如何被组织和执行的&#xff0c;那么这将是一项艰巨的任务。这篇精华将解释调度器如何为你的游戏框架提供组织性和灵活性。 随着电脑游戏的日益复杂&#xff0c;实时事件和模拟几乎在今…

接口测试之XML响应断言

目录 XPath 基本语法XML 响应结果解析XML 响应结果断言 XML 响应数据 如何提取 AddResult 中的值&#xff1f; <soap:Body><AddResponse xmlns"http://tempuri.org/"><AddResult>4</AddResult></AddResponse> </soap:Body> …

VB6 MQTT为什么在物联网应用中使用 MQTT 而不是 HTTP?

有需要VBA,VB6,VB.NET等方面的MQTT的可以找我 一、MQTT简介 MQTT被广泛用于物联网(IoT:Internet of Things)领域&#xff0c;其中大量的设备需要进行实时通信和数据交换。它采用了一种发布/订阅(publish/subscribe)模型&#xff0c;其中消息的发送者&#xff08;发布者&#…

CobaltStrike基本渗透

目录 CobaltStrike简介 主要功能&#xff1a; 使用注意&#xff1a; 在使用CobaltStrike进行渗透测试时&#xff0c;务必遵守法律法规&#xff0c;并获得合法授权。 CobaltStrike安装 前提 安装 服务端安装 windows安装 CS基本使用 监听器配置 一些基本的攻击…

C++/C 线性插值

插值 插值&#xff0c;是根据已知的数据序列&#xff08;可以理解为你坐标中一系列离散的点&#xff09;&#xff0c;找到其中的规律&#xff0c;然后根据找到的这个规律&#xff0c;来对其中尚未有数据记录的点 应用 对缺失的数据进行补偿对图像进行放大缩小 通用公式 如上…

小白跟做江科大32单片机之按键控制LED

原理部分 1.LED部分使用的是这样的连接方式 2.传感器模块的电路图 滤波电容如果接地&#xff0c;一般用于滤波&#xff0c;在分析电路时就不用考虑。下面这个电路就是看A端和B端哪端的拉力大&#xff0c;就能把电压值对应到相应的电压值 比较器部分 如果A端电压>B端电压&am…

【MySQL】表的连接和复合查询

欢迎来到Cefler的博客&#x1f601; &#x1f54c;博客主页&#xff1a;折纸花满衣 &#x1f3e0;个人专栏&#xff1a;MySQL 目录 &#x1f449;&#x1f3fb;连接JOIN&#x1f449;&#x1f3fb;子查询&#x1f449;&#x1f3fb;合并查询 &#x1f449;&#x1f3fb;连接JOI…

【算法】位运算算法——消失的两个数字(困难)

题解&#xff1a;消失的两个数字(位运算算法) 目录 1.题目2.题解3.示例代码如下4.总结 1.题目 题目链接&#xff1a;LINK 2.题解 本题要求时间复杂度O(N),空间复杂度O(1),分别否了我们 排序遍历 和 哈希数组 的想法。想要在规定时间/空间复杂度内完成本题&#xff0c;需要借…