RAG技术探索

news2024/11/16 19:55:28

什么是RAG

1 RAG原理

RAG(Retrieval Augmented Generation, 检索增强生成),即LLM在回答问题或生成文本时,先会从大量文档中检索出相关的信息,然后基于这些信息生成回答或文本,从而提高预测质量。RAG模型尤其适合知识密集型的任务。

LLM vs RAG检索:

RGA.PNG

RAG 方法使得开发者不必为每一个特定的任务重新训练整个大模型,只需要外挂上知识库,即可为模型提供额外的信息输入,提高其回答的准确性。

RAG典型案例

[ChatPDF]

实现原理:

image.png

实现流程:

1 ChatPDF首先读取PDF文件,将其转换为可处理的文本格式,例如txt格式;
2 对提取出来的文本进行清理和标准化,例如去除特殊字符、分段、分句等;
3 使用OpenAI的Embeddings API将每个分段转换为向量,这个向量将对文本中的语义进行编码,以便于与问题的向量进行比较;
4 当用户提出问题时,ChatPDF使用OpenAI的Embeddings API将问题转换为一个向量,并与每个分段的向量进行比较,以找到最相似的分段;
5 ChatPDF将找到的最相似的分段与问题作为prompt,调用OpenAI的Completion API,让ChatGPT学习分段内容后,再回答对应的问题;
6 ChatPDF会将ChatGPT生成的答案返回给用户,完成一次查询.

BaiChuan

百川大模型的搜索增强系统融合了多个模块,包括指令意图理解、智能搜索和结果增强等组件。 该体系通过深入理解用户指令,精确驱动查询词的搜索,并结合大语言模型技术来优化模型结果生成的可靠性。通过这一系列协同作用,大模型实现了更精确、智能的模型结果回答。

[Multi-modal retrieval-based LMs]

RA-CM3 是一个检索增强的多模态模型,其包含了一个信息检索框架来从外部存储库中获取知识,具体来说,作者首先使用预训练的 CLIP 模型来实现一个检索器(retriever),然后使用 CM3 Transformer 架构来构成一个生成器(generator),其中检索器用来辅助模型从外部存储库中搜索有关于当前提示文本中的精确信息,然后将该信息连同文本送入到生成器中进行图像合成,这样设计的模型的准确性就会大大提高。

[LeanDojo]

通过检索增强进行数学证明的案例,其中 Lean是公式数学的编码语言.

image.png

实现方法

RAG 的实现主要包括三个主要步骤:数据索引、检索和生成。

数据索引

原始数据处理成为便于检索的格式(通常为embedding),该过程又可以进一步分为:

  • 数据提取
  • 分块(Chunking)
  • embedding及索引
检索

检索环节是获取有效信息的关键环节,主要包含:

  • 元数据过滤
  • 图关系检索:引入知识图谱,将实体变成node,把它们之间的关系变成relation,就可以利用知识之间的关系做更准确的回答。
  • 检索技术:相似度检索、关键词检索、SQL检索
  • 重排序:相关度、匹配度等重调整
  • 查询轮换:子查询、HyDE等;
文本生成

原始query 和检索得到的文本组合起来输入模型得到结果的过程。

那么,我们该如何学习大模型?

作为一名热心肠的互联网老兵,我决定把宝贵的AI知识分享给大家。 至于能学习到多少就看你的学习毅力和能力了 。我已将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

一、大模型全套的学习路线

学习大型人工智能模型,如GPT-3、BERT或任何其他先进的神经网络模型,需要系统的方法和持续的努力。既然要系统的学习大模型,那么学习路线是必不可少的,下面的这份路线能帮助你快速梳理知识,形成自己的体系。

L1级别:AI大模型时代的华丽登场

L2级别:AI大模型API应用开发工程

L3级别:大模型应用架构进阶实践

L4级别:大模型微调与私有化部署

一般掌握到第四个级别,市场上大多数岗位都是可以胜任,但要还不是天花板,天花板级别要求更加严格,对于算法和实战是非常苛刻的。建议普通人掌握到L4级别即可。

以上的AI大模型学习路线,不知道为什么发出来就有点糊,高清版可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

在这里插入图片描述

二、640套AI大模型报告合集

这套包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。

img

三、大模型经典PDF籍

随着人工智能技术的飞速发展,AI大模型已经成为了当今科技领域的一大热点。这些大型预训练模型,如GPT-3、BERT、XLNet等,以其强大的语言理解和生成能力,正在改变我们对人工智能的认识。 那以下这些PDF籍就是非常不错的学习资源。

img

四、AI大模型商业化落地方案

img

作为普通人,入局大模型时代需要持续学习和实践,不断提高自己的技能和认知水平,同时也需要有责任感和伦理意识,为人工智能的健康发展贡献力量。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1717108.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

生态融合促发展 YashanDB与丰图科技完成兼容性认证

近日,深圳计算科学研究院崖山数据库系统YashanDB V23与丰图科技智域城市数字孪生平台顺利完成兼容性互认证。经严格测试,双方产品完全兼容,稳定运行,充分满足企事业单位在高性能、高可用性、高稳定性及高可控性方面的核心需求&…

Redis 和 Mysql 如何保证两者数据一致性

文章目录 概述解决方案消息队列异步重试 基于 RocketMQ 的可靠性消息通信,来实现最终一致Canal 组件,监控 Mysql 中 binlog 的日志,把更新后的数据同步到 Redis 里面延时双删弱一致性和强一致性Canal详解 概述 在分布式系统中,保…

YoloV8改进策略:卷积篇|基于PConv的二次创新|附结构图|性能和精度得到大幅度提高(独家原创)

摘要 在PConv的基础上做了二次创新,创新后的模型不仅在精度和速度上有了质的提升,还可以支持Stride为2的降采样。 改进方法简单高效,需要发论文的同学不要错过! 论文指导 PConv在论文中的描述 论文: 下面我们展示了可以通过利用特征图的冗余来进一步优化成本。如图3所…

动手学深度学习27 GoogLeNet

动手学深度学习27 含有并行连结的网络GoogLeNet/Inception V3 1. GoogLeNet2. 代码3. QA 1. GoogLeNet 白色块用来处理通道数,蓝色块用来抽取信息 stage 高宽减半做完表示一个stage完成 大量使用1*1卷积 降低通道数 更小的窗口 Inception V2 diff v3 …

Dify数据库结构导出到PowerDesigner

即刻关注,获取更多 关注公众号 N学无止界 获取更多 Dify数据库结构导出到PowerDesigner Dify简介 Dify简介 欢迎使用 Dify Dify 是一款开源的大语言模型(LLM) 应用开发平台。它融合了后端即服务(Backend as Service)和 LLMOps 的理念&…

大数据中的电商数仓项目:探秘业务的核心

我学习完一个电商数仓的项目和电影实时推荐项目,便兴冲冲的去面试大数据开发岗,在面试的时候,面试官总是喜欢问,聊聊你为什么要做这个项目以及你这个项目有哪些业务? 我心想,为什么要做这个业务&#xff1f…

探究 Meme 的金融与社交属性

原文标题:《A Social and Financial Study of Memecoins》撰文:Andrew Hong编译:Chris,Techub News 每一个市场周期都伴随着 Meme 代币的出现。一群人围绕着某个 Meme 集结起来,暂时抬高了某个资产的价格(从…

多维时序 | Matlab实现SA-BP模拟退火算法优化BP神经网络多变量时间序列预测

多维时序 | Matlab实现SA-BP模拟退火算法优化BP神经网络多变量时间序列预测 目录 多维时序 | Matlab实现SA-BP模拟退火算法优化BP神经网络多变量时间序列预测效果一览基本介绍程序设计参考资料 效果一览 基本介绍 1.Matlab实现SA-BP模拟退火算法优化BP神经网络多变量时间序列预…

5G NR TAE TEST

环境配置: 测试TAE时,需要比对不同的Antenna Port之间的差异来测试 配置DL 2 layer MU的case layer1:通过设置weight,只有一个物理天线上有weight,其他天线上的weight为0,该天线的DMRS DMRS Port设置为1…

HCIP、补充 - 认识网络设备

认识网络设备 认识网络设备框式设备硬件模块网络设备逻辑架构业务报文转发处理流程转发信息 认识网络设备 框式设备硬件模块 主控板(MPU,Main Processing Unit):负责整个系统的控制平面和管理平面。 控制平面完成系统的协议处理、业务处理、路由运算、转…

【Linux】 管道扩展 — 开始使用命名管道

送给大家一句话: 人生有六个字,前面三个是不害怕,后面三个是不后悔。 -- 董卿 🔆🔆🔆🔆🔆🔆🔆🔆 命名管道的功能实现 1 命名管道的原理2 代码实…

佳能R6M2断电覆盖的恢复方法

佳能R6是佳能R系列中的一款高端机,最近两年佳能和索尼不断斗法,都号称自己的新机型能达到影视级,不过目前看貌似索尼更胜一筹。下边这个案例是文件拍摄时断电,结果变成0字节,然后覆盖了部分数据。 故障存储:128G存储卡…

CentOS7部署Yearning并配置MySQL数据库远程访问详细流程——“cpolar内网穿透”

文章目录 前言1. Linux 部署Yearning2. 本地访问Yearning3. Linux 安装cpolar4. 配置Yearning公网访问地址5. 公网远程访问Yearning管理界面6. 固定Yearning公网地址 前言 本文主要介绍在 Linux 系统简单部署 Yearning 并结合 cpolar 内网穿透工具实现远程访问,破除…

都在说的跨网文件共享系统是什么?企业该怎么甄选?

跨网文件共享系统成为越来越受关注的产品焦点,那么跨网文件共享系统是什么呢?跨网文件共享是指在不同网络之间共享文件的过程,使得不同网络中的用户可以访问和使用共享的文件。 原则上而言,不同网络间的文件是无法共享的&#xff…

家政预约小程序09小程序分享及海报分享

目录 1 设置弹窗2 制作海报总结 上一篇我们介绍了服务详情页面的开发,本篇介绍一下用户分享及海报分享的功能 1 设置弹窗 当用户点击分享按钮的时候,系统弹出弹窗界面,提供分享好友及分享海报的选项。选中页面组件,添加弹窗组件 …

ReDos攻击浅析

DOS为拒绝服务攻击,re则是由于正则表达式使用不当,陷入正则引擎的回溯陷阱导致服务崩溃,大量消耗后台性能 正则 ​ 探讨redos攻击之前,首先了解下正则的一些知识 执行过程 大体的执行过程分为: 编译 -> 执行编译过程中&…

ROS2从入门到精通2-1:launch多节点启动与脚本配置

目录 0 专栏介绍1 ROS2的启动脚本优化2 ROS2多节点启动案例2.1 C架构2.2 Python架构 3 其他格式的启动文件3.1 .yaml启动3.2 .xml启动 0 专栏介绍 本专栏旨在通过对ROS2的系统学习,掌握ROS2底层基本分布式原理,并具有机器人建模和应用ROS2进行实际项目的…

Redis 中的 Zset 数据结构详解

目录 用法 1. 增 2. 删 3. 查 4. 交,并 编码方式 应用场景 Redis 中的 Zset(有序集合)是一种将元素按照分数进行排序的数据结构。与上篇写的SetRedis 中的 Set 数据结构详解不同,Zset 中的每个元素都关联一个浮点数类型的…

QT C++ 基于word模板 在书签位置写入文字和图片

如果你有按模版批量自动化操作word文件的需求,那么本文能给你一定的帮助。 它能满足你程序自动化生成报表的需求。常常用于上位机、测试仪器的软件中。 需要你你自己做个word模版文档,添加2个书签。点按钮,会按照你的模板文档生成一个同样的…

如何使用 Midjourney 进行 UI/UX 设计

图片由Midjourney创建 UI/UX 设计中的 AI 艺术彻底改变了游戏规则,开辟了惊人的可能性。Midjourney 可以在几秒钟内启动大量设计选项,让您的工作变得更轻松、更快捷。 在本文中,我将向您展示一些为 UI/UX 设计创建 AI 艺术的技巧。 要事第…