非量表题如何进行信效度分析

news2024/11/16 3:15:39

效度是指设计的题确实在测量某个东西,一般问卷中使用到。如果是量表类的数据,其一般是用因子分析这种方法去验证效度水平,其可通过因子分析探究各测量量表的内部结构情况,分析因子分析得到的内部结构与自己预期的内部结构进行对比,进而判断效度情况。
但如果本身数据不是量表,比如都是些选择题,这些测量项是否有效地测量对应的概念(变量或维度信息),此时无法使用因子分析,此时可考虑使用内容效度,内容效度的概念较为广泛,其是指测量项真实可以测量的文字分析佐证,比如来源于某文献或者得到专家的认可等。本文档则是指专家打分数据的数字化结果论证,将专家打分数据收集后分析,利用实际指标来判断内容效度。

内容效度案例

1、背景
某研究者新设计一份问卷,希望通过专家打分方式来判断其有效性,避免个人主观臆断情况,研究者共设计出20个测量项(即20个题),并且找到8位该研究领域的专家进行打分(专家打分只能为1/2/3/4共4个分值,1分代表较差,2分表示一般,3分表示较好,4分表示良好)并且整理得到数据结果如下图所示。

需要提示的是:打分分值只能为1/2/3/4共4个数字,这是由当前算法决定,如果不是这样,系统会提示‘专家打分只能为1/2/3/4分!’。以及第1列测量项的名称可修改为实际的名称,第1行的专家1/2/3等也可修改为实际的专家名称。

2、理论
SPSSAU中内容效度的计算参考文献来源如下:

史静琤, 莫显昆, & MO Xiankun. (2012). 量表编制中内容效度指数的应用. 中南大学学报:医学版, 37(2), 4.
柯友枝, 孙建刚, 李博, & 刘阳. (2023). 问卷是否有效—基于2010-2020年cssci收录体育期刊文献的系统分析. 上海体育学院学报, 47(2), 37-47.

内容效度的计算上较为简单,专家打分只能为1/2/3/4分,3/4分表示测量项较好或者好,那么首先计算出每项时打分为3/4分的专家数量,从而得到打分为3/4分的占比情况(即I-CVI指标),该指标值越大越好,可使用该指标进行内容效度判断,其判断标准如下表格:

专家数量判断标准
<=5个专家时I-CVI<1小于1则不通过I-CVI=1则通过
>5个专家时I-CVI<1小于0.78则不通过I-CVI>=0.78则通过


当专家个数小于等于5个时即专家个数较少时,此时希望专家打分均为3/4分。如果专家个数大于5个时即专家个数较多时,此时只要78%的专家打分为3/4分即可。
与此同时,为防止专家打分出现随机性,还可计算专家打分随机一致性概率Pc值,并且计算校正内容效度(调整Kappa,K*值),进一步进行内容效度判断。专家打分随机一致性指标的目的在于衡量专家打分的独立性,比如10个专家全部都打4分的概率一般较低,那么如果出现了就需要校正它,即计算调整 Kappa值。专家打分随机一致性概率Pc值=C(n,A)*(0.5^n),此处n表示专家总数量,A表示某测量项时专家打分为3/4的个数,C表示数学上的组合计算。得到专家打分随机一致性概率Pc值后,接着计算校正内容效度即调整Kappa值(K*值),调整Kappa值=(I-CVI值 – Pc值) / (1 – Pc值),如果是正常的专家打分数据,Pc值通常较高,最后结合调整Kappa值进行内容效度判断,其判断标准如下表格:

调整Kappa(K*值)判断标准
<0.4
[0.4, 0.6)一般
[0.6, 0.74)良好
[0.74, 1)优秀


调整Kappa值越大越好,一般大于0.6即说明内容效度良好,但如果调整Kappa值小于0.4则无法接受。I-CVI指标是针对具体每测量项,当然还可计算全部一起的测量项,比例本文档所述共20个测量项全部一起时的整体内容效度情况,其有两个指标,分别全体一致S-CVI(也称S-CVI或UA值),还有平均S-CVI指标值。全体一致S-CVI = 打分全部都为3/4的测量项个数 / 总测量项个数,其用于判断到底有多少测量项均全部是3/4分,通常其判断标准是0.8,即需要有80%以上的测量项全部都被专家认为是良好或者好才行。而平均一致S-CVI则是I-CVI指标的算术平均值而已,其通常标准为0.9,即需要平均来看I-CVI指标大于0.9才可以。一般情况下可能使用I-CVI较多。

3、操作
本例子操作如下图:

直接将SPSSAU默认数据进行粘贴替换即可。

4、SPSSAU输出结果
SPSSAU共输出3个表格,分别是测量项内容效度专家评分及指标计算、整体内容效度(S-CVI)和不同专家人数各情况下I-CVI的评估速查表。如下述:

表格说明
测量项内容效度专家评分及指标计算输出I-CVI指标及校正内容效度(调整Kappa值)等,用于每个测量项的内容效度判断
整体内容效度(S-CVI)输出全体一致S-CVI(也称S-CVI或UA值),平均S-CVI指标值,用于整体内容效度判断
不同专家人数各情况下I-CVI的评估速查表其为一个评估速查表,包括3~9个打分专家时的I-CVI合格临界值及调整Kappa合格临界值等信息

5、文字分析
本次案例结果分别如下:

上表格可以看到,共有20个测量项并且8个专家进行打分,8个专家对20个测量项打分为3/4的次数是152,即仅有8次是打分1或2。具体来看,测量项13为校正内容效度为一般,测量项13时,共有5个专家打分为3/4分,还有3个专家均打2分。其I-CVI=5/8=0.625<0.78,因而I-CVI不通过即内容效度不达标。与此同时Pc值=C(8,5)*(0.5^8)=0.21875,调整Kappa=(0.625-0.21875)/(1-0.21875)=0.52,介于0.4到0.6之间,意味着调整内容效度一般。通常情况下建议使用调整内容效度即针对调整Kappa值进行判断,因为调整Kappa值将专家打分独立性纳入考虑范畴。

上表格展示整体内容效度的两个指标,分别是全体一致S-CVI和平均S-CVI指标。计算上,全体一致S-CVI=打分全部都为3/4的测量项个数 / 总测量项个数 = 14/20=0.7<0.8,因而不通过。如果是平均S-CVI指标,其为I-CVI指标的算术平均为0.95>=0.9,其通过。全体一致S-CVI指标衡量的是所有测量项整体内容效度情况,而平均S-CVI指标衡量的是平均内容效度,一般查阅全体一致S-CVI可能更加适合。

上表格展示不同专家数量时I-CVI的评价临界值,比如如果6个专家,那么如果评价为3/4的专家人数为4个则I-CVI为0.667则不通过(但此时调整Kappa值=0.565,调整内容效度通过),该表格仅为速查使用,无其它意义。

6、剖析

涉及以下几个关键点,分别如下:

S-CVI和调整Kaapa两个指标均是衡量内容效度,但二者结论可能不一致,此时建议以调整Kappa指标结果为准,因为该指标考虑专家打分独立性情况,通常更准确。

全体一致S-CVI和平均S-CVI指标这两个指标结论不一致,一般以全体一致S-CVI指标结论作为标准较多,因为平均S-CVI仅为I-CVI的算术平均而已。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1714110.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

子网划分案例

4.2子网划分 “有类编址”的地址划分过于死板&#xff0c;划分的颗粒度太大&#xff0c;会有大量的主机号不能被充分利用&#xff0c;从而造成了大量的IP地址资源浪费。因此可以利用子网划分来减少地址浪费&#xff0c;即VLSM (Variable Length Subnet Mask)&#xff0c;可变长…

Java实现对象存储的4种方式(本地对象存储、MINIO、阿里云OSS、FastDFS)

文章目录 Java实现对象存储的3中方式1、概述2、本地对象存储2.1 配置本地文件相关信息2.2 通用映射配置 ResourcesConfig2.3 文件上传业务 LocalSysFileServiceImpl2.4 上传接口2.5 演示 3、MINIO3.1 依赖3.2 配置3.3 配置连接信息3.4. MINIO文件上传业务3.5 文件上传下载接口3…

高考前很焦虑?看看罗永浩提的三个建议!罗永浩推荐的随身WiFi居然蕴含这样的商机?2024普通人如何翻身?

你能相信现如今身家过亿的老罗罗永浩高中就辍学了吗&#xff1f;相信很多人都不敢置信吧。罗永浩无论是表现出来的口才、情商还是智商&#xff0c;无论如何都无法让人把他和高中辍学联系起来。 而这一点似乎也是老罗人生中的一个遗憾&#xff0c;于是又在一年高考季的时候&…

【AREngine BUG 解决方法】无法获取有效的相机图像尺寸

近期拿了一台 华为mate20 Pro的手机&#xff0c;在运行AR示例的过程中出现了黑屏。 问题排查 SDK版本&#xff1a;com.huawei.hms:arenginesdk:3.7.0.3 定位 经排查&#xff0c;发现(ARCamera对象的相机内参) getImageDimensions()返回的图像尺寸的width和height都为0。 这…

【AI大模型】如何让大模型变得更聪明?基于时代背景的思考

【AI大模型】如何让大模型变得更聪明 前言 在以前&#xff0c;AI和大模型实际上界限较为清晰。但是随着人工智能技术的不断发展&#xff0c;基于大规模预训练模型的应用在基于AI人工智能的技术支持和帮助上&#xff0c;多个领域展现出了前所未有的能力。无论是自然语言处理、…

Dinky MySQLCDC 整库同步到 Doris

资源&#xff1a;flink 1.17.0、dinky 1.0.2、doris-2.0.1-rc04 问题&#xff1a;Cannot deserialize value of type int from String &#xff0c;detailMessageunknowndatabases &#xff0c;not a valid int value 2024-05-29 16:52:20.136 ERROR org.apache.doris.flink.…

电脑录屏怎么录?7个电脑录屏软件免费版强势来袭,赶快收藏!

电脑录屏怎么录&#xff1f;相信很多小伙伴们都不知道怎么在Windows电脑上录屏吧&#xff1f;在当今社会&#xff0c;随着互联网的快速发展&#xff0c;越来越多的小伙伴们开始通过制作视频内容来分享知识、展示技能或者记录生活。电脑录屏成为了一种简单高效的方式&#xff0c…

C语言-----指针数组 \ 数组指针

一 指针数组 用来存放指针的数组 int arr[10]; //整型数组 char ch[5]; //字符数组 int * arr[6]; //存放整型指针的数组 char * arr[5]; //存放字符指针的数组 // 指针数组的应用 int main() {int arr1[] { 1,2,3,4,5 };int arr2[] { 2,3,4,5,6 };int arr3[] { 3,4,…

LED显示屏模组七大参数

LED模组是LED显示屏的核心组件&#xff0c;它包含LED线路板和外壳&#xff0c;将LED灯珠按照特定规则排列并封装&#xff0c;通常还会进行防水处理。随着LED显示屏行业的发展及其广泛应用&#xff0c;LED模组的功能和作用变得愈加重要。那么&#xff0c;LED模组的七大参数是什么…

光栅幅值细分原理与实现

本文介绍光栅幅值细分原理与实现。 光栅是工业测量领域中常见的传感器&#xff0c;如下图。主要厂家有雷尼绍&#xff0c;海德汉&#xff0c;配套的光栅读数头有模拟信号的&#xff0c;也有直接细分输出数字脉冲的&#xff0c;本文的细分针对模拟信号&#xff0c;即有正弦信号…

苹果iOS18将引入ChatGPT;美国AI禁令再升级;微软首发Phi-3多模态模型 | AI头条

整理 | 王轶群 出品 | AI 科技大本营&#xff08;ID&#xff1a;rgznai100&#xff09; 一分钟速览新闻点&#xff01; 谷歌努力手动删除搜索中奇怪的人工智能答案 苹果和OpenAI签订协议&#xff0c;将在iOS18引入ChatGPT 微软发布主打视觉能力的 Phi-3-vision 模型 苹果押注…

SOLIDWORKS正版价格多少钱

SOLIDWORKS作为目前应用较为广泛的3D CAD软件之一&#xff0c;具有强大的功能和实用性&#xff0c;它为各类工程设计提供综合解决方案。但是&#xff0c;正版SOLIDWORKS价格是个不可忽视的问题。那SOLIDWORKS的正版价格究竟如何呢&#xff1f;又是受什么因素影响&#xff1f; 先…

SpringBoot 之基础(一)

文章目录 SpringBoot 基础基本概念创建 SpringBoot 项目编码编写启动类写 Controller运行 / 测试properties 和 yml关闭 Spring banner日志spring-boot 默认的日志格式 解决 start.spring.io 不能访问不使用 spring boot 的 parent pom SpringBoot 基础 Spring Boot 是由 Pivo…

【SpringMVC】_SpringMVC项目返回HTML与JSON

目录 1. SpringMVC项目返回HTML页面 2. SpringMVC项目返回JSON 2.1 程序演示 2.2 关于响应的Content-Type 2.2.1 接口为对象 2.2.2 接口为String 2.2.3 接口为Map 本专栏已介绍&#xff1a; 返回静态页面&#xff1a; 【Spring MVC】_SpringMVC项目返回静态页面_mvc 返…

C# 数组/集合排序

一&#xff1a;基础类型集合排序 /// <summary> /// 排序 /// </summary> /// <param name"isReverse">顺序是否取反</param> public static void Sort<T>(this IList<T> array, bool isReverse false)where T : IComparable …

Linux下多线程的相关概念

&#x1f916;个人主页&#xff1a;晚风相伴-CSDN博客 &#x1f496;如果觉得内容对你有帮助的话&#xff0c;还请给博主一键三连&#xff08;点赞&#x1f49c;、收藏&#x1f9e1;、关注&#x1f49a;&#xff09;吧 &#x1f64f;如果内容有误或者有写的不好的地方的话&…

py黑帽子学习笔记_scapy

简介 代码简洁&#xff1a;相比于前两个博客总结&#xff0c;很多socket操作&#xff0c;如果使用scapy仅需几行代码即可实现 获取邮箱身份凭证 编写基础嗅探器&#xff0c;脚本可显示任何收到的一个包的详细情况 直接运行 尝试监听邮件收发&#xff0c;监听指定端口&#x…

2024年03月 Python(六级)真题解析#中国电子学会#全国青少年软件编程等级考试

Python等级考试(1~6级)全部真题・点这里 一、单选题(共25题,共50分) 第1题 以下选项中,创建类正确的是?() A: class test1: def prt(self): …… B: class Mg(): def__init__(na,ag): self.na=na C: class A(): def print(self): print(“Yes”) a=A() a.print() D…

理解多线程看这一篇就够了

一、基本概念与关系 程序 程序是含有指令和数据的文件&#xff0c;静态地存储在磁盘等存储设备上。它是软件的实体&#xff0c;但未被激活。 进程 进程是程序的一次执行过程&#xff0c;是系统运行程序的基本单位。当程序被操作系统加载并执行时&#xff0c;就成为一个进程&a…

Kprobe实现原理

kprobe其实就是将某个要检测的指令备份&#xff0c;再替换成int3(x86)或者未定义指令(arm)来触发异常&#xff0c;再调用对应体系的异常处理函数来执行我们自定义的hook&#xff0c;执行完我们自定义的hook,再将备份的指令放回原来的位置继续往下执行 下面我们就来看下linux内核…