DiffIR论文阅读笔记

news2024/11/15 16:17:14

在这里插入图片描述

  • ICCV2023的一篇用diffusion模型做Image Restoration的论文,一作是清华的教授,还在NIPS2023上一作发表了Hierarchical Integration Diffusion Model for Realistic Image Deblurring,作者里甚至有Luc Van Gool大佬。
  • 模型分三个部分,一个是CPEN用来提取IPR,一个是DIRformer,用来完成restoration任务,一个是denoising network,用diffusion的方式来预测IPR。分两阶段训练,第一阶段先train CPEN和DIRformer,第二阶段再train denoising network。如此看来其实思想和stable diffusion很像,就是不在图像域上diffusion,这样size太大而且step太多,而是在特征域上diffusion,本文就是在IPR上diffusion

在这里插入图片描述

  • 方法的细节上图都有。首先CPEN是一个从输入和GT的concatenate中提取一维向量,用这个一维向量参与到用于restoration的transformer中的channel-wise调制过程。第一阶段是这个restoration network和这个CPEN的联合训练,损失是restoration结果和GT之间的L1损失。这里引进GT是为了这个向量能提取得更好一点,从而使得整个过程的PSNR更高一点。
  • 但实际应用中我们不可能有GT来作为输入,所以第二阶段我们需要train一个diffusion model来从LQ图片中预测z。这里diffusion还是老一套,认为一阶段train好的CPEN提取的z是x0,然后加噪到xt,reverse的过程就是从xt去噪预测x0的过程。diffusion模型的输入由3部分组成,首先当然是上一步的Zt,然后是t,接着是作为条件输入的D,这个D是用一个新的CPEN从LQ中提取的,称为CPEN2,他和第一阶段的CPEN在网络结构上是一样的(除了输入层)。这个很好理解,如果没有D作为条件,那不就相当于要diffusion模型从噪声预测一个z出来,那这个z当然和input无关,所以需要额外添加一个D作为条件,这也是很多用diffusion做restoration的思路。第二阶段需要混合训练CPEN2,denoising network和restoration network,损失函数是restoration结果 和GT之间的L1损失,以及diffusion预测的IPR和第一阶段的CPEN预测的IPR之间的L1损失。
  • 感觉这个工作怪怪的,restoraion一般比较关注的去噪没有做,居然做了inpainting。选的三个任务是超分,inpainting和deblurring这三个任务。此外,这个IPR向量仅仅是通道调制,在我看来更多可能影响风格信息,用diffusion模型来预测这个IPR向量真的有必要吗?对这个工作实际效果持怀疑态度,到时候跑代码看一下。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1713096.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

无需安装的在线PS:打开即用

为什么想用在线PS网页版?Photoshop常用于平面设计,是不少设计师接触过的第一款设计软件。作为一款平面设计工具,ps功能太多,并且没有在线版,这不仅需要设计师花费时间学习软件,还需要设计师具备一定的设计能…

2023年全球DDoS攻击现状与趋势分析

天翼安全科技有限公司副总工程师、运营保障部总经理陈林表示,2023年扫段攻击频次快速增长,成为网络基础设施面临的最大威胁。为躲避防御,低速扫段攻击成为主流达到攻击总数的73.19%;43.26%的C段攻击持续时间小于5分钟,…

Science Advances|柔性超韧半导体纤维的大规模制备(柔性半导体器件/可穿戴电子/纤维器件/柔性电子)

北京大学 雷霆(Ting Lei)团队,在《Science Advances》上发布了一篇题为“Continuous production of ultratough semiconducting polymer fibers with high electronic performance”的论文。论文内容如下: 一、 摘要 共轭聚合物具有良好的光电特性,但其脆性和机械特性差,…

03 Prometheus+Grafana可视化配置

03 PrometheusGrafana可视化配置 大家好,我是秋意零。接上篇Prometheus入门安装教程 grafana官网下载安装包比较慢,如果没有魔法。可关注公众号【秋意零】回复101获取 Grafana官网下载:https://grafana.com/grafana/download 这里采用的二进制…

定个小目标之每天刷LeetCode热题(3)

这是一道简单题&#xff0c;我这里就只讲两种解法 第一种是数组加双指针&#xff0c;先遍历链表将值存到数组里&#xff0c;然后分别从数组两端进行一一比较判断是否满足回文&#xff0c;代码实现 class Solution {public boolean isPalindrome(ListNode head) {List<Inte…

重生奇迹mu卡智力的方法

1、准备3个号A打手,B智力MM,C随意。 2、使用C匹配组队,但是不能选择自动进入队伍。 3、用A申请C的队伍,但是C不做通过处理。 4、用A组B,用快捷键D的方式。 5、所谓的卡智力就是智力MM可以给打手加属性加血&#xff0c;但是并不在一个队伍里享受经验&#xff0c;适用于MM不是…

如何批量结构化分汇多工作表sheet?

目录 一、如遇合并表格&#xff0c;注意结构化二、确认主键&#xff0c;合并所有文件数据三、sheet2同理四、案例总结 如果遇到这样情形&#xff0c;多文件夹多文件&#xff0c;多工作表的分汇场景&#xff1b;可以参考以下方法解决。 一、如遇合并表格&#xff0c;注意结构…

Python 机器学习 基础 之 算法链与管道 【算法链与管道/预处理进行参数选择/构建管道/在网格搜索中使用管道】的简单说明

Python 机器学习 基础 之 算法链与管道 【算法链与管道/预处理进行参数选择/构建管道/在网格搜索中使用管道】的简单说明 目录 Python 机器学习 基础 之 算法链与管道 【算法链与管道/预处理进行参数选择/构建管道/在网格搜索中使用管道】的简单说明 一、简单介绍 二、算法链…

「异步魔法:Python数据库交互的革命」(一)

Hi&#xff0c;我是阿佑&#xff0c;今天将和大家一块打开异步魔法的大门&#xff0c;进入Python异步编程的神秘领域&#xff0c;学习如何同时施展多个咒语而不需等待。了解asyncio的魔力&#xff0c;掌握Async SQLAlchemy和Tortoise-ORM的秘密&#xff0c;让你的数据库操作快如…

2024广东省赛 G.Menji 和 gcd

题目 #include <bits/stdc.h> using namespace std; #define int long long #define pb push_back #define fi first #define se second #define lson p << 1 #define rson p << 1 | 1 #define ll long long const int maxn 1e6 5, inf 1e12, maxm 4e4 …

脑机接口:是现代医学的外挂,更是瘫痪病人的豪赌

5 月 17 日&#xff0c;马斯克公开表示&#xff0c;继今年年初首次成功将大脑芯片植入患者大脑后&#xff0c;Neuralink 正在寻找第二位受试者接受这项手术。 5 月 20 日&#xff0c;美国食品药品监督管理局 (FDA) 批准了马斯克的 Neuralink 公司为第二位患者植入脑芯片&#…

超详细介绍基于微调 Faster R-CNN实现海上航拍图像中检测小物体-含源码与数据集免费下载

在航拍图像中检测小物体,尤其是对于海上救援等关键应用而言,是一项独特的挑战。及时检测水中的人可能意味着生死之间的差别。我们的研究重点是微调 Faster R-CNN(一种强大的两阶段物体检测器),以满足这一重要需求。 我们研究的核心是SeaDroneSee 数据集,这是一组重要的图…

Springboot项目搭建 jdk1.8

1.idea创建项目 2.项目配置 maven 编辑项目编码 删除无用文件 修改配置文件后缀&#xff0c;设置数据库 spring:datasource:driver-class-name: com.mysql.cj.jdbc.Driverurl:jdbc:mysql://localhost:3306/honey2024?useSSLfalse&useUnicodetrue&characterEncodingUT…

随手记:多行文本域存数据有换行,回显数据换行展示

1.在新增的时候存储数据 <el-input type"textarea"v-model"XXXX"></el-input> 2.详情页返回的数据&#xff1a; replace一顿操作确实复杂 最快的方法直接写个样式:style"white-space: pre-line" 即可行内或者class样式都可以 …

windows 下载redis (通过redis-server.exe启动服务)

下载链接&#xff1a; https://github.com/MicrosoftArchive/redis/releases 启动&#xff1a; 查看&#xff1a; 人工智能学习网站 https://chat.xutongbao.top

在项目中集成Web端数据库操作:推荐工具一览

在项目中集成Web端数据库操作&#xff1a;推荐工具一览 博主猫头虎的技术世界 &#x1f31f; 欢迎来到猫头虎的博客 — 探索技术的无限可能&#xff01; 专栏链接&#xff1a; &#x1f517; 精选专栏&#xff1a; 《面试题大全》 — 面试准备的宝典&#xff01;《IDEA开发秘籍…

Excel快速判断大量身份证性别,VBS代码

身份证判断性别的原理就是,身份证倒数第二位是单数表示是男的,单数是女的 可以用IF公式来判断,但是需要下拉,如果几百上千条数据还好,要是上万就不好拉取了,如果数据太多,可以用VBA代码判断 IF(MOD(VALUE(MID(A1,17,1)),2)0,"女","男") 原理:MID(A1,17,1…

【408真题】2009-24

“接”是针对题目进行必要的分析&#xff0c;比较简略&#xff1b; “化”是对题目中所涉及到的知识点进行详细解释&#xff1b; “发”是对此题型的解题套路总结&#xff0c;并结合历年真题或者典型例题进行运用。 涉及到的知识全部来源于王道各科教材&#xff08;2025版&…

TokenInsight: Covalent SDK、网络及数据可用性解决方案评估报告

摘要 Covalent 是一个区块链长期数据可用性解决方案&#xff0c;提供结构化的链上数据 API&#xff0c;允许开发者访问超过 225 个区块链的全面结构化链上数据。TokenInsight 根据标准化评级方法&#xff0c;从六个维度对 Covalent 进行了评估。 技术和安全 Covalent 自 201…

【学习Day1】计算机基础

✍&#x1f3fb;记录学习过程中的输出&#xff0c;坚持每天学习一点点~ ❤️希望能给大家提供帮助~欢迎点赞&#x1f44d;&#x1f3fb;收藏⭐评论✍&#x1f3fb;指点&#x1f64f; 1.1 中央处理单元CPU 中央处理器&#xff08;CPU&#xff0c;central processing unit&…