Redis基础篇二

news2024/11/16 10:34:53

Redis基础篇二

  • Redis线程
    • Redis之后为什么引进了多线程
  • Redis持久化
    • Redis如何实现数据不丢失
    • AOF日志是如何实现的
      • 为什么先执行命令,再把数据写入日志呢?
      • AOF 写回策略有几种?
      • AOF日志过大,会触发什么操作
      • 重写 AOF 日志的过程是怎样的?
    • RDB快照是如何实现的?
      • RDB 做快照时会阻塞线程吗?
      • RDB 在执行快照的时候,数据能修改吗?
    • 为什么会有混合持久化?

Redis线程

Redis之后为什么引进了多线程

虽然 Redis 的主要工作(网络 I/O 和执行命令)一直是单线程模型,但是在 Redis 6.0 版本之后,也采用了多个 I/O 线程来处理网络请求,这是因为随着网络硬件的性能提升,Redis 的性能瓶颈有时会出现在网络 I/O 的处理上。

所以为了提高网络 I/O 的并行度,Redis 6.0 对于网络 I/O 采用多线程来处理。但是对于命令的执行,Redis 仍然使用单线程来处理,所以大家不要误解 Redis 有多线程同时执行命令。

Redis 官方表示,Redis 6.0 版本引入的多线程 I/O 特性对性能提升至少是一倍以上。

Redis 6.0 版本支持的 I/O 多线程特性,默认情况下 I/O 多线程只针对发送响应数据(write client socket),并不会以多线程的方式处理读请求(read client socket)。要想开启多线程处理客户端读请求,就需要把 Redis.conf 配置文件中的 io-threads-do-reads 配置项设为 yes。
下面展示一些 内联代码片

//读请求也使用io多线程
io-threads-do-reads yes 

同时, Redis.conf 配置文件中提供了 IO 多线程个数的配置项。

// io-threads N,表示启用 N-1 个 I/O 多线程(主线程也算一个 I/O 线程)
io-threads 4 

关于线程数的设置,官方的建议是如果为 4 核的 CPU,建议线程数设置为 2 或 3,如果为 8 核 CPU 建议线程数设置为 6,线程数一定要小于机器核数,线程数并不是越大越好。

因此, Redis 6.0 版本之后,Redis 在启动的时候,默认情况下会额外创建 6 个线程(这里的线程数不包括主线程):

Redis-server : Redis的主线程,主要负责执行命令;
bio_close_file、bio_aof_fsync、bio_lazy_free:三个后台线程,分别异步处理关闭文件任务、AOF刷盘任务、释放内存任务;
io_thd_1、io_thd_2、io_thd_3:三个 I/O 线程,io-threads 默认是 4 ,所以会启动 3(4-1)个 I/O 多线程,用来分担 Redis 网络 I/O 的压力。

Redis持久化

Redis如何实现数据不丢失

Redis 的读写操作都是在内存中,所以 Redis 性能才会高,但是当 Redis 重启后,内存中的数据就会丢失,那为了保证内存中的数据不会丢失,Redis 实现了数据持久化的机制,这个机制会把数据存储到磁盘,这样在 Redis 重启就能够从磁盘中恢复原有的数据。

Redis 共有三种数据持久化的方式:

AOF 日志:每执行一条写操作命令,就把该命令以追加的方式写入到一个文件里;
RDB 快照:将某一时刻的内存数据,以二进制的方式写入磁盘;
混合持久化方式:Redis 4.0 新增的方式,集成了 AOF 和 RBD 的优点;

AOF日志是如何实现的

Redis 在执行完一条写操作命令后,就会把该命令以追加的方式写入到一个文件里,然后 Redis 重启时,会读取该文件记录的命令,然后逐一执行命令的方式来进行数据恢复。
在这里插入图片描述
我这里以「set name xxx」命令作为例子,Redis 执行了这条命令后,记录在 AOF 日志里的内容如下

在这里插入图片描述
我这里给大家解释下。

「*3」表示当前命令有三个部分,每部分都是以「$+数字」开头,后面紧跟着具体的命令、键或值。然后,这里的「数字」表示这部分中的命令、键或值一共有多少字节。例如,「$3 set」表示这部分有 3 个字节,也就是「set」命令这个字符串的长度。

为什么先执行命令,再把数据写入日志呢?

Reids 是先执行写操作命令后,才将该命令记录到 AOF 日志里的,这么做其实有两个好处。

避免额外的检查开销:因为如果先将写操作命令记录到 AOF 日志里,再执行该命令的话,如果当前的命令语法有问题,那么如果不进行命令语法检查,该错误的命令记录到 AOF 日志里后,Redis 在使用日志恢复数据时,就可能会出错。
不会阻塞当前写操作命令的执行:因为当写操作命令执行成功后,才会将命令记录到 AOF 日志。
当然,这样做也会带来风险:

数据可能会丢失: 执行写操作命令和记录日志是两个过程,那当 Redis 在还没来得及将命令写入到硬盘时,服务器发生宕机了,这个数据就会有丢失的风险。
可能阻塞其他操作: 由于写操作命令执行成功后才记录到 AOF 日志,所以不会阻塞当前命令的执行,但因为 AOF 日志也是在主线程中执行,所以当 Redis 把日志文件写入磁盘的时候,还是会阻塞后续的操作无法执行。

AOF 写回策略有几种?

先来看看,Redis 写入 AOF 日志的过程,如下图
在这里插入图片描述
具体说说:

Redis 执行完写操作命令后,会将命令追加到 server.aof_buf 缓冲区;
然后通过 write() 系统调用,将 aof_buf 缓冲区的数据写入到 AOF 文件,此时数据并没有写入到硬盘,而是拷贝到了内核缓冲区 page cache,等待内核将数据写入硬盘;
具体内核缓冲区的数据什么时候写入到硬盘,由内核决定。
Redis 提供了 3 种写回硬盘的策略,控制的就是上面说的第三步的过程。 在 Redis.conf 配置文件中的 appendfsync 配置项可以有以下 3 种参数可填:

Always,这个单词的意思是「总是」,所以它的意思是每次写操作命令执行完后,同步将 AOF 日志数据写回硬盘;
Everysec,这个单词的意思是「每秒」,所以它的意思是每次写操作命令执行完后,先将命令写入到 AOF 文件的内核缓冲区,然后每隔一秒将缓冲区里的内容写回到硬盘;
No,意味着不由 Redis 控制写回硬盘的时机,转交给操作系统控制写回的时机,也就是每次写操作命令执行完后,先将命令写入到 AOF 文件的内核缓冲区,再由操作系统决定何时将缓冲区内容写回硬盘。

AOF日志过大,会触发什么操作

AOF 日志是一个文件,随着执行的写操作命令越来越多,文件的大小会越来越大。 如果当 AOF 日志文件过大就会带来性能问题,比如重启 Redis 后,需要读 AOF 文件的内容以恢复数据,如果文件过大,整个恢复的过程就会很慢。

所以,Redis 为了避免 AOF 文件越写越大,提供了 AOF 重写机制,当 AOF 文件的大小超过所设定的阈值后,Redis 就会启用 AOF 重写机制,来压缩 AOF 文件。

AOF 重写机制是在重写时,读取当前数据库中的所有键值对,然后将每一个键值对用一条命令记录到「新的 AOF 文件」,等到全部记录完后,就将新的 AOF 文件替换掉现有的 AOF 文件。

举个例子,在没有使用重写机制前,假设前后执行了「set name xiaolin」和「set name xiaolincoding」这两个命令的话,就会将这两个命令记录到 AOF 文件。
但是在使用重写机制后,就会读取 name 最新的 value(键值对) ,然后用一条 「set name xiaolincoding」命令记录到新的 AOF 文件,之前的第一个命令就没有必要记录了,因为它属于「历史」命令,没有作用了。这样一来,一个键值对在重写日志中只用一条命令就行了。

重写工作完成后,就会将新的 AOF 文件覆盖现有的 AOF 文件,这就相当于压缩了 AOF 文件,使得 AOF 文件体积变小了。

重写 AOF 日志的过程是怎样的?

Redis 的重写 AOF 过程是由后台子进程 bgrewriteaof 来完成的,这么做可以达到两个好处:
子进程进行 AOF 重写期间,主进程可以继续处理命令请求,从而避免阻塞主进程;
子进程带有主进程的数据副本,这里使用子进程而不是线程,因为如果是使用线程,多线程之间会共享内存,那么在修改共享内存数据的时候,需要通过加锁来保证数据的安全,而这样就会降低性能。而使用子进程,创建子进程时,父子进程是共享内存数据的,不过这个共享的内存只能以只读的方式,而当父子进程任意一方修改了该共享内存,就会发生「写时复制」,于是父子进程就有了独立的数据副本,就不用加锁来保证数据安全。
触发重写机制后,主进程就会创建重写 AOF 的子进程,此时父子进程共享物理内存,重写子进程只会对这个内存进行只读,重写 AOF 子进程会读取数据库里的所有数据,并逐一把内存数据的键值对转换成一条命令,再将命令记录到重写日志(新的 AOF 文件)。

但是重写过程中,主进程依然可以正常处理命令,那问题来了,重写 AOF 日志过程中,如果主进程修改了已经存在 key-value,那么会发生写时复制,此时这个 key-value 数据在子进程的内存数据就跟主进程的内存数据不一致了,这时要怎么办呢?

为了解决这种数据不一致问题,Redis 设置了一个 AOF 重写缓冲区,这个缓冲区在创建 bgrewriteaof 子进程之后开始使用。

在重写 AOF 期间,当 Redis 执行完一个写命令之后,它会同时将这个写命令写入到 「AOF 缓冲区」和 「AOF 重写缓冲区」。
在这里插入图片描述
也就是说,在 bgrewriteaof 子进程执行 AOF 重写期间,主进程需要执行以下三个工作:

执行客户端发来的命令;
将执行后的写命令追加到 「AOF 缓冲区」;
将执行后的写命令追加到 「AOF 重写缓冲区」;
当子进程完成 AOF 重写工作(扫描数据库中所有数据,逐一把内存数据的键值对转换成一条命令,再将命令记录到重写日志)后,会向主进程发送一条信号,信号是进程间通讯的一种方式,且是异步的。

主进程收到该信号后,会调用一个信号处理函数,该函数主要做以下工作:

将 AOF 重写缓冲区中的所有内容追加到新的 AOF 的文件中,使得新旧两个 AOF 文件所保存的数据库状态一致;
新的 AOF 的文件进行改名,覆盖现有的 AOF 文件。
信号函数执行完后,主进程就可以继续像往常一样处理命令了。

RDB快照是如何实现的?

因为 AOF 日志记录的是操作命令,不是实际的数据,所以用 AOF 方法做故障恢复时,需要全量把日志都执行一遍,一旦 AOF 日志非常多,势必会造成 Redis 的恢复操作缓慢。

为了解决这个问题,Redis 增加了 RDB 快照。所谓的快照,就是记录某一个瞬间东西,比如当我们给风景拍照时,那一个瞬间的画面和信息就记录到了一张照片。

所以,RDB 快照就是记录某一个瞬间的内存数据,记录的是实际数据,而 AOF 文件记录的是命令操作的日志,而不是实际的数据。

因此在 Redis 恢复数据时, RDB 恢复数据的效率会比 AOF 高些,因为直接将 RDB 文件读入内存就可以,不需要像 AOF 那样还需要额外执行操作命令的步骤才能恢复数据。

RDB 做快照时会阻塞线程吗?

Redis 提供了两个命令来生成 RDB 文件,分别是 save 和 bgsave,他们的区别就在于是否在「主线程」里执行:

执行了 save 命令,就会在主线程生成 RDB 文件,由于和执行操作命令在同一个线程,所以如果写入 RDB 文件的时间太长,会阻塞主线程;
执行了 bgsave 命令,会创建一个子进程来生成 RDB 文件,这样可以避免主线程的阻塞;
Redis 还可以通过配置文件的选项来实现每隔一段时间自动执行一次 bgsave 命令,默认会提供以下配置:

save 900 1
save 300 10
save 60 10000 

别看选项名叫 save,实际上执行的是 bgsave 命令,也就是会创建子进程来生成 RDB 快照文件。 只要满足上面条件的任意一个,就会执行 bgsave,它们的意思分别是:

900 秒之内,对数据库进行了至少 1 次修改;
300 秒之内,对数据库进行了至少 10 次修改;
60 秒之内,对数据库进行了至少 10000 次修改。
这里提一点,Redis 的快照是全量快照,也就是说每次执行快照,都是把内存中的「所有数据」都记录到磁盘中。所以执行快照是一个比较重的操作,如果频率太频繁,可能会对 Redis 性能产生影响。如果频率太低,服务器故障时,丢失的数据会更多。

RDB 在执行快照的时候,数据能修改吗?

可以的,执行 bgsave 过程中,Redis 依然可以继续处理操作命令的,也就是数据是能被修改的,关键的技术就在于写时复制技术(Copy-On-Write, COW)。

执行 bgsave 命令的时候,会通过 fork() 创建子进程,此时子进程和父进程是共享同一片内存数据的,因为创建子进程的时候,会复制父进程的页表,但是页表指向的物理内存还是一个,此时如果主线程执行读操作,则主线程和 bgsave 子进程互相不影响。
在这里插入图片描述
如果主线程执行写操作,则被修改的数据会复制一份副本,然后 bgsave 子进程会把该副本数据写入 RDB 文件,在这个过程中,主线程仍然可以直接修改原来的数据。
在这里插入图片描述

为什么会有混合持久化?

RDB 优点是数据恢复速度快,但是快照的频率不好把握。频率太低,丢失的数据就会比较多,频率太高,就会影响性能。

AOF 优点是丢失数据少,但是数据恢复不快。

为了集成了两者的优点, Redis 4.0 提出了混合使用 AOF 日志和内存快照,也叫混合持久化,既保证了 Redis 重启速度,又降低数据丢失风险。

混合持久化工作在 AOF 日志重写过程,当开启了混合持久化时,在 AOF 重写日志时,fork 出来的重写子进程会先将与主线程共享的内存数据以 RDB 方式写入到 AOF 文件,然后主线程处理的操作命令会被记录在重写缓冲区里,重写缓冲区里的增量命令会以 AOF 方式写入到 AOF 文件,写入完成后通知主进程将新的含有 RDB 格式和 AOF 格式的 AOF 文件替换旧的的 AOF 文件。

也就是说,使用了混合持久化,AOF 文件的前半部分是 RDB 格式的全量数据,后半部分是 AOF 格式的增量数据。
在这里插入图片描述
这样的好处在于,重启 Redis 加载数据的时候,由于前半部分是 RDB 内容,这样加载的时候速度会很快。

加载完 RDB 的内容后,才会加载后半部分的 AOF 内容,这里的内容是 Redis 后台子进程重写 AOF 期间,主线程处理的操作命令,可以使得数据更少的丢失。

混合持久化优点:

混合持久化结合了 RDB 和 AOF 持久化的优点,开头为 RDB 的格式,使得 Redis 可以更快的启动,同时结合 AOF 的优点,有减低了大量数据丢失的风险。
混合持久化缺点:

AOF 文件中添加了 RDB 格式的内容,使得 AOF 文件的可读性变得很差;
兼容性差,如果开启混合持久化,那么此混合持久化 AOF 文件,就不能用在 Redis 4.0 之前版本了。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1712838.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

LeetCode72:编辑距离

题目描述 给你两个单词 word1 和 word2, 请返回将 word1 转换成 word2 所使用的最少操作数 。 你可以对一个单词进行如下三种操作: 插入一个字符 删除一个字符 替换一个字符 解题思想 删除:dp[i][j] dp[i-1][j]1 增加:对word1增…

word-商务报告排版,规格尺寸,版面设置,调整事项

一、规格尺寸 布局-纸张大小 设计出血区域,在上下左右增加3毫米 网格:布局-对齐-网格设置-打开垂直间隔 可自定义网格起点 调整网格间距 通过网格来调整页边距,按alt键进行微细调整,左边距和右边距通过标尺调 二、设置主题字体和…

kafka-守护启动

文章目录 1、kafka守护启动1.1、先启动zookeeper1.1.1、查看 zookeeper-server-start.sh 的地址1.1.2、查看 zookeeper.properties 的地址 1.2、查看 jps -l1.3、再启动kafka1.3.1、查看 kafka-server-start.sh 地址1.3.2、查看 server.properties 地址 1.4、再次查看 jps -l 1…

word如何快速查看某段字数

在底部的状态栏上找到【字数】部分; 单击【字数】部分,Word将显示包括字符数、字数和段落数在内的详细统计信息。

基于Spring Cloud微服务架构的Java CRM客户关系管理系统源码

在当今竞争激烈的市场环境中,企业要想保持持续的增长和稳定的客户基础,高效管理客户关系显得尤为重要。CRM(客户关系管理)系统作为一种先进的管理工具,正逐渐成为企业不可或缺的一部分。该系统通过集成销售、市场、服务…

1个月备考PMP拿到3A,拒绝无效努力

考完PMP已经是去年的事情,近期好多姐妹也要考PMP,分享 一下我1个月备考PMP拿到3A通过经历。 为什么想考PMP? PMP认证价值在于它整体的一套项目管理知识体系,掌握课学项目管理的基本术语和它的一个知识框架,我主要是为…

人工智能在乳腺癌领域的最新进展|【医学AI·文献速递·05-29】

小罗碎碎念 2024-05-29|文献速递 今天分享的文章,主题是AI乳腺癌。 第三篇文章,个人觉得是今天最有借鉴价值的——临床故事接地气,工科算法赶潮流。这篇文章主要做的事情是利用多模态多组学,去区分乳腺腺病和乳腺癌&a…

C#中结构struct能否继承于一个类class,类class能否继承于一个struct

C#中结构struct能否继承于一个类class,类class能否继承于一个struct 答案是:都不能。 第一种情行,尝试结构继承类 报错:接口列表中的类型"XX"不是接口interface。 一般来说,都是结构只能实现接口&#x…

[UE5]安卓调用外置摄像头拍照(之显示画面)

目录 部分参考文献(有些有用的我没标,没放上来) 要点 总蓝图 结果 部分参考文献(有些有用的我没标,没放上来) 【UE】获取USB摄像头画面_虚幻捕获硬件摄像头-CSDN博客 UE4安卓调用摄像头拍照确保打…

SQL注入攻击是什么?如何预防?

一、SQL注入攻击是什么? SQL注入攻击是一种利用Web应用程序中的安全漏洞,将恶意的SQL代码插入到数据库查询中的攻击方式。攻击者通过在Web应用程序的输入字段中插入恶意的SQL代码,然后在后台的数据库服务器上解析执行这些代码,从而…

信息学一周赛事安排

本周比赛提醒 本周有以下几场比赛即将开始: 1.ABC-356 比赛时间:6月1日(周六)晚20:00 比赛链接:https://atcoder.jp/contests/abc356 2.ARC-179 比赛时间:6月2日(周日)晚20:00 …

K8s中配置使用ingress

Ingress是什么 在Kubernetes中,Ingress是一种用于将外部流量路由到集群内部服务的API对象。它通常与Ingress控制器一起使用,Ingress控制器负责根据Ingress规则路由外部流量到不同的服务上。   Ingress 提供从集群外部到集群内服务的 HTTP 和 HTTPS 路由…

C++容器之多重映射(std::multimap)

目录 1 概述2 使用实例3 接口使用3.1 construct3.2 assigns3.3 iterators3.4 capacity3.5 insert3.6 erase3.7 swap3.8 clear3.9 emplace3.10 emplace_hint3.11 key_comp3.12 value_comp3.13 find/count3.14 lower_bound/upper_bound/equal_range3.15 get_allocator1 概述 多重…

YOLOv10最详细全面讲解1- 目标检测-准备自己的数据集(YOLOv5,YOLOv8均适用)

YOLOv10没想到出来的如此之快,作为一名YOLO的爱好者,以YOLOv5和YOLOv8的经验,打算出一套从数据集装备->环境配置->训练->验证->目标追踪全系列教程。请大家多多点赞和收藏!!!YOLOv5和YOLOv8亲测…

使用Ollama和Open WebUI管理本地开源大模型的完整指南

🏡作者主页:点击! 🤖AI大模型部署与应用专栏:点击! ⏰️创作时间:2024年5月27日12点20分 🀄️文章质量:96分 目录 ✨️Open-WebUI介绍 优点 💥部署教程…

linux部署运维1——centos7.9离线安装部署web项目所需的依赖环境,包括mysql8.0,nginx1.20,redis5.0等工具

在实际项目部署运维过程中,如果是云服务器,基本安装项目所需的依赖环境都是通过yum联网拉取网络资源实现自动化安装的;但是对于一些特殊场合,在没有外部网络的情况下,就无法使用yum命令联网操作,只能通过编…

Redis连接池

本次实现的Redis连接池是一个单例且多线程安全的连接池。 主要实现的功能为:读取配置,将配置中对应建立redis连接并加入到连接池中,然后从连接池中取出连接使用。每当配置进行修改,重新往池子中加入连接。 通用类 实现一些基础都…

将文件批量重命名001到100?怎么批量修改文件夹名字?这四款工具不要错过!

你们有没有遇到过需要批量修改文件(文件夹)名的情况?从网上下载一些文件都会带有一些后缀名字。大量的文件,一个一个修改重命名的话,这简直是个头疼的事情。市面上虽然有很多批量文件重命名工具,但要么收费…

勒索软件统计数据揭示了网络勒索的惊人速度

本文通过各种报告摘录,提供了有关当前勒索软件形势的统计数据和见解。 全球勒索病毒危机加剧 NTT安全控股《2024全球威胁情报报告》(2024年5月) 据NTT安全控股公司的《2024年全球威胁情报报告》显示,勒索软件和勒索事件在2023年激…

静态测试---基于WorkList的活跃变量分析

本文主要用于记录在活跃变量分析实验中的报错及解决,涉及静态测试的详细原理内容较少,编译运行底层逻辑偏多。 一、实验要求 1)使用llvm基于框架实现一个基于WorkList的活跃变量分析demo。变量在某个程序点有两种状态,live 或 dea…