python-数据可视化(总)

news2024/11/16 11:25:30

python-数据可视化

** 数据可视化 指的是通过可视化表示来探索数据,它与数据挖掘**紧密相关,而数据挖掘指的是使用代码来探索数据集的规律和关联。数据集可以是用一行代码就能表示的小型数字列表,也可以是数以吉字节的数据

最流行的工具之一是matplotlib它是一个数学绘图库,我们将使用它来制作简单的图表,如折线图和散点图。然后,我们将基于随机漫步概念生成一个更有趣的数据集——根据一系列随机决策生成的图表。

我们还将使用Pygal包,它专注于生成适合在数字设备上显示的图表。可在用户与图表交互时突出元素以及调整其大小,还可轻松地调整整个图表的尺寸,使其适合在微型智能手表或巨型显示器上显示。

一、安装matplotlib

在Windows系统中,首先需要安装Visual Studio

参考:http://t.csdnimg.cn/336oy

在命令行窗口输入

pip install matplotlib

对安装进行测试。为此,首先使用命令pythonpython3启动一个终端会话,再尝试导入matplotlib:

$ python3
>>> import matplotlib
>>>

如果没有出现任何错误消息,就说明你的系统安装了matplotlib

matplotlib官网实例

Plot types — Matplotlib 3.9.0 documentation

二、使用matplotlib

折线图

1.pyplot()绘制简单的折线图

示例1:绘制简单的折线图

import matplotlib.pyplot as plt

squares = [1, 4, 9, 16, 25]
plt.plot(squares)
plt.show()

注意:在pycharm容易报错:

AttributeError: module ‘backend_interagg‘ has no attribute ‘FigureCanvas‘

这时需要修改某些参数,可以这样将上面文件第一行改为下面三行。

import matplotlib
matplotlib.use('TkAgg')
import matplotlib.pyplot as plt
2.定制折线图的通用参数
import matplotlib
matplotlib.use('TkAgg')
import matplotlib.pyplot as plt
import numpy as np


squares = [1, 4, 9, 16, 25]
# make data:
plt.plot(squares, linewidth=1)
#linewidth决定了plot()绘制的线条的粗细


# 设置图表标题,并给坐标轴加上标签
plt.title("Number--graf", fontsize=24)
#函数title()给图表指定标题,fontsize指定了图表中文字的大小

plt.xlabel("Value", fontsize=14)
plt.ylabel("Square of Value", fontsize=14)
#函数xlabel()和ylabel()让你能够为每条轴设置标题


# 设置刻度标记的大小
plt.tick_params(axis='both', labelsize=14)
#函数tick_params()设置刻度的样式其中指定的实参将影响x轴和y轴上的刻度(axis='both'),并将刻度标记的字号设置为14(labelsize=14)。

plt.show()

这样画出来的图像并不是完全正确的

原因在于当你向plot()提供一系列数字时,它假设第一个数据点对应的 x 坐标值为0

因此需要指定第一个点对应的 x 值为1,改变默认的行为

方法是给plot()同时提供输入值和输出值

plot()正确使用如下:

input_values = [1, 2, 3, 4, 5]
squares = [1, 4, 9, 16, 25]
plt.plot(input_values, squares, linewidth=5)
#第一个列表指定x轴的参数
#第二个列表指定y轴的参数

散点图

1.使用scatter()绘制散点图
plt.scatter(2, 4)
#使用`scatter()`,并向它传递一对 *x* 和 *y* 坐标,它将在指定位置绘制一个点
绘制一个点
import matplotlib.pyplot as plt

plt.scatter(2, 4,s=10)
#并使用实参s设置了绘制图形时使用的点的尺寸。

# 设置图表标题并给坐标轴加上标签
plt.title("Square Numbers", fontsize=24)
plt.xlabel("Value", fontsize=14)
plt.ylabel("Square of Value", fontsize=14)

# 设置刻度标记的大小
plt.tick_params(axis='both', which='major', labelsize=14)

plt.show()

在这里插入图片描述

绘制一系列点

要绘制一系列的点,可向scatter()传递两个分别包含x值和y值的列表

x_values = [1, 2, 3, 4, 5]
#横坐标的列表
y_values = [1, 4, 9, 16, 25]
#纵坐标的列表
plt.scatter(x_values, y_values, s=100)

在这里插入图片描述

使用for循环绘制一群点

x_values = list(range(1,100))

y_values =[i**2 for i in range(1,100)]
#方法同上
plt.scatter(x_values, y_values, s=5)

plt.axis([0, 1100, 0, 1100000])
#函数axis()要求提供四个值:x(1-1100) 和 y(0-1100000) 坐标轴的最小值和最大值

scatter()的另一个参数

edgecolor=‘none’ 作用删除数据点的轮廓,默认蓝色

edgecolor=‘black’ 作用将数据点的轮廓线条改为黑色

在这里插入图片描述

plt.scatter(x_values, y_values, c='red',edgecolor = 'none',s=5)

在这里插入图片描述

plt.scatter(x_values, y_values, c=(0, 0.8, 0),edgecolor = 'none',s=5)
#值越接近0,指定的颜色越深,值越接近1,指定的颜色越浅。

在这里插入图片描述

颜色映射

  • 颜色映射(colormap)是一系列颜色,它们从起始颜色渐变到结束颜色。在可视化中,颜色映射用于突出数据的规律,例如,你可能用较浅的颜色来显示较小的值,并使用较深的颜色来显示较大的值

模块pyplot内置了一组颜色映射。要使用这些颜色映射,你需要告诉pyplot该如何设置数据集中每个点的颜色。

plt.scatter(x_values, y_values, c=y_values, cmap=plt.cm.Blues, edgecolor='none', s=20)

在这里插入图片描述

参数c设置成了一个 y 值列表,并使用参数cmap告诉pyplot使用哪个颜色映射。这些代码将 y 值较小的点显示为浅蓝色,并将 y 值较大的点显示为深蓝色

自动保存图表

  • 要让程序自动将图表保存到文件中,可将对plt.show()的调用替换为对plt.savefig()的调用:
plt.savefig('squares_plot.png', bbox_inches='tight')
#第一个实参指定要以什么样的文件名保存图表,这个文件将存储到.py所在的目录中
#第二个实参指定将图表多余的空白区域裁剪掉。如果要保留图表周围多余的空白区域,可省略这个实参。

三、随机漫步

  • 随机漫步是这样行走得到的路径:每次行走都完全是随机的,没有明确的方向,结果是由一系列随机决策决定的随机漫步就是蚂蚁在晕头转向的情况下,每次都沿随机的方向前行所经过的路径。
  • 例如,漂浮在水滴上的花粉因不断受到水分子的挤压而在水面上移动。水滴中的分子运动是随机的,因此花粉在水面上的运动路径犹如随机漫步。

1.创建RandomWalk()类

为模拟随机漫步,我们将创建一个名为RandomWalk的类,它随机地选择前进方向。这个类需要三个属性,其中一个是存储随机漫步次数的变量,其他两个是列表,分别存储随机漫步经过的每个点的 xy 坐标

RandomWalk类只包含两个方法:__init__()fill_walk(),其中后者计算随机漫步经过的所有点。

from random import choice


class RandoWalk:
    def __init__(self,num_points=5000):
        self.num_points = num_points

        self.x_value = [0]
        self.y_value = [0]
    def fill_waik(self):

        while len(self.x_value)<self.num_points:
            x_derection = choice([-1,1])
            x_distance = choice([0,1,2,3,4])

            y_derection = choice([-1,1])
            y_distance = choice([0,1,2,3,4])

            x_step = x_distance*x_derection
            y_step = y_distance*y_derection

            if x_step==0 and y_step==0 :
                continue

            next_x = self.x_value[-1]+x_step
            next_y = self.y_value[-1]+y_step

            self.x_value.append(next_x)
            self.y_value.append(next_y)
import matplotlib
matplotlib.use('TkAgg')
import matplotlib.pyplot as plt
import numpy as np
import matplotlib.pyplot as plt
from RandomWalk import RandoWalk

rw = RandoWalk()
rw.fill_waik()
plt.scatter(rw.x_value, rw.y_value, c='red', edgecolor='none', s=20)


plt.show()

在这里插入图片描述

模拟多次随机漫步

每次随机漫步都不同,因此探索可能生成的各种模式很有趣。要在不多次运行程序的情况下使用前面的代码模拟多次随机漫步,一种办法是将这些代码放在一个while循环中,如下所示:

while True:
    # 创建一个RandomWalk实例,并将其包含的点都绘制出来
    rw = RandomWalk()
    rw.fill_walk()
    plt.scatter(rw.x_values, rw.y_values, s=15)
    plt.show()

    keep_running = input("Make another walk? (y/n): ")if keep_running == 'n':
        break
point_numbers = list(range(rw.num_points))
plt.scatter(rw.x_value, rw.y_value,c=point_numbers, cmap=plt.cm.Blues, edgecolor='none', s=20)
#绘制时按先后次序着色,即生成的轨迹。

在这里插入图片描述

除了给随机漫步的各个点着色,以指出它们的先后顺序外,如果还能呈现随机漫步的起点和终点就更好了

plt.scatter(0, 0, c='green', edgecolors='none', s=100)
plt.scatter(rw.x_values[-1], rw.y_values[-1], c='red', edgecolors='none',
        s=100)
#单独绘制起点和终点,使其更加突出。
plt.axis('off')
#直接隐藏所有坐标轴信息

plt.yticks([])
plt.xticks([])
#直接隐藏各坐标轴信息,但是有边框
 plt.figure(figsize=(10, 6))
 #函数figure()用于指定图表的宽度、高度、分辨率和背景色。你需要给形参figsize指定一个元组,向matplotlib指出绘图窗口的尺寸,单位为英寸。
plt.figure(dpi=128, figsize=(10, 6))

四、使用Pygal模拟掷骰子

  • 使用Python可视化包Pygal来生成可缩放的矢量图形文件对于需要在尺寸不同的屏幕上显示的图表,这很有用,因为它们将自动缩放,以适合观看者的屏幕

1.安装pygal

在命令行窗口输入

python -m pip install --user pygal==1.7

示例:Line — pygal 2.0.0 documentation

2.创建一个Die()类

from random import randint

class Die:
    def __init__(self,num_size=6):
        self.num_size = num_size
        
    def roll(self):
        return  randint(1,self.num_size)
        #返回一个1-6之间的随机数,返回起始值1、终止值num_sides或这两个值之间的任何整数!

3.模拟掷色子

import matplotlib
import pygal
from die import Die
matplotlib.use('TkAgg')
import matplotlib.pyplot as plt

die = Die()
values =[]

for value in range(0,100):
    value = die.roll()
    values.append(value)

consults = []
for value in range(1,die.num_size+1):
    value = values.count(value)
    consults.append(value)

print(values)
print(consults)

4.绘制直方图

  • 直方图是一种条形图,指出了各种结果出现的频率。
#创建一个pygal.Bar()实例
hist = pygal.Bar()

hist.title = "Results of Rolling one D6 1000 times"
hist.x_lables = ['1','2','3','4','5','6']
hist.x_title = 'result'
hist.y_title = 'Frequency of Result'

hist.add('D6',consults)
#add()将一系列值添加到图表中(向它传递要给添加的值指定的标签,还有一个列表,其中包含将出现在图表中的值)
hist.render_to_file('die_results.svg')

使用浏览器打开.svg文件

在这里插入图片描述

CVS数据-可视化

从网上下载某些数据,并对这些数据进行可视化,可视化以两种常见格式存储的数据:CSV和JSON。

在这里插入图片描述

处理CVS数据-最简单的方式是将数据作为一系列以逗号分隔的值

提取CVS数据

import csv

filename = 'sitka_weather_07-2014.csv'
#存储使用的文件名

with open(filename) as f:
    reader = csv.reader(f)
    #阅读器对象存储在reader中。
    header_row = next(reader)
    #模块csv包含函数next(),调用它并将阅读器对象传递给它时,它将返回文件中的下一行
    #调用了next()一次,因此得到的是文件的第一行
    print(header_row)
    
 #输出
#['AKDT', 'Max TemperatureF', 'Mean TemperatureF', 'Min TemperatureF', 'Max Dew PointF', 'MeanDew PointF', 'Min DewpointF', 'Max Humidity', ' Mean Humidity', ' Min Humidity', ' Max Sea Level PressureIn', ' Mean Sea Level PressureIn', ' Min Sea Level PressureIn', ' Max VisibilityMiles', ' Mean VisibilityMiles', ' Min VisibilityMiles', ' Max Wind SpeedMPH', ' Mean Wind SpeedMPH', ' Max Gust SpeedMPH', 'PrecipitationIn', ' CloudCover', ' Events', ' WindDirDegrees']
    
 #reader处理文件中以逗号分隔的第一行数据,并将每项数据都作为一个元素存储在列表中
        for index, column_header in enumerate(header_row):
        print(index+1,column_header)
        #可使用上述语句得到更详细的表头,对列表调用了enumerate()来获取每个元素的索引及其值

提取其中索引为0和1的值

#提取第二列为最高气温
with open(filename) as f:
    reader = csv.reader(f)
    header_row = next(reader)
    #已经读取了第一行,此时标志已经在第二行
    high = []
    for row in reader:
        high.append(row[1])#可以将row[1]转化为int(row[1])
    print(high)
    #对reader遍历是每一行组成的列表,且从第二行开始读取
    
    
    fig = plt.figure(dpi=128, figsize=(10, 6))
    
    plt.plot(date,high,c='red')
    plt.title("Daily high temperatures July 2014", fontsize=24)
    plt.xlabel("data", fontsize=16)
    plt.ylabel("Temperature (F)", fontsize=16)
    plt.tick_params(axis='both', which='major', labelsize=16)
    plt.show()
    #绘制最高气温折线图

模块datetime

在cvs文件中提取的日期为字符串,我们需要想办法将字符串'2014-7-1'转换为一个表示相应日期的对象。

可使用模块datetime中的方法strptime()

导包

from datetime import datetime

如:将’2014-7-14’格式的字符串转化为对应的日期格式

first_date = datetime.strptime('2014-7-1', '%Y-%m-%d')
#datetime的方法strptime(),并将包含所需日期的字符串作为第一个实参。
#第二个实参告诉Python如何设置日期的格式。
  • %Y-:让Python将字符串中第一个连字符前面的部分视为四位的年份
  • %m-:将第二个连字符前面的部分视为表示月份的数字
  • %d:将字符串的最后一部分视为月份中的一天(1~31)
  • 其余如下:
实参含义
%A星期的名称,如Monday
%B月份名,如January
%m用数字表示的月份(01~12)
%d用数字表示月份中的一天(01~31)
%Y四位的年份,如2015
%y两位的年份,如15
%H24小时制的小时数(00~23)
%I12小时制的小时数(01~12)
%pam或pm
%M分钟数(00~59)
%S秒数(00~61)

#读取第一列的日期
	high = []
    dateTimes = []
    for row in reader:
        high.append(int(row[1]))
        dateTime = datetime.strptime(row[0],'%Y-%m-%d')
        dateTimes.append(dateTime)
    
    fig = plt.figure(dpi=128, figsize=(10, 6))
    plt.plot(dateTimes,high,c='red')
    fig.autofmt_xdate()
    #调用fig.autofmt_xdate()来绘制斜的日期标签,以免它们彼此重叠

在绘制一个最低温

low = []
for row in reader:
        low.append(int(row[3]))
        
plt.plot(dateTimes,low,c='blue')

在这里插入图片描述

给中间区域着色

  • fill_between(),它接受一个 x 值系列和两个 y 值系列,并填充两个 y 值系列之间的空间
plt.fill_between(dateTimes,low,high,facecolor='grey', alpha=0.1)
#第一个参数为x值,第二三个参数为y值的最低和最高,facecolor为填充的颜色,alpha透明度0-1

JSON数据-可视化

  • json文件实际上就是一个很长的Python列表,其中每个元素都是一个包含五个键的字典:统计日期、月份、周数、周几以及关闭价格。

在这里插入图片描述

同时,介绍另一种数据文件获取渠道:从在线地址中获取json文件,需要用到工具:urlopen

import urlopen
import json

json_url = 'https://raw.githubusercontent.com/muxuezi/btc/master/btc_close_2017.json'
#给出数据的网络地址
response = urlopen(json_url)
# 读取数据
req = response.read()
# 将数据写入文件
with open('btc_close_2017_urllib.json','wb') as f: 
    f.write(req)
# 加载json格式
file_urllib = json.loads(req) 
print(file_urllib)

运行后即可将数据下载到btc_close_2017_urllib.json中

使用json数据

filename = 'btc_close_2017.json'
with open(filename) as f:
    btc_data = json.load(f)
#将文件中的数据存储在btc_data中

#加载json格式
for btc_dict in btc_data:
    data = btc_dict['date']
    month = btc_dict['month']
    week = btc_dict['week']
    weekday = btc_dict['weekday']
    close = btc_dict['close']
    print("{} is month {} week {}, {}, the close price is {} RMB".format(data, month, week, weekday, close))
import pygal
import matplotlib
matplotlib.use('TkAgg')
import json

filename = 'btc_close_2017.json'
with open(filename) as f:
    btc_data = json.load(f)
#将文件中的数据存储在btc_data中
date = []
month = []
week = []
weekday =[]
close = []
#加载json格式
for btc_dict in btc_data:
    date.append(btc_dict['date'])
    month.append(btc_dict['month'])
    week.append(int(btc_dict['week']))
    weekday.append(btc_dict['weekday'])
    close.append(int(float(btc_dict['close'])))

line_chart = pygal.Line(x_label_rotation=20, show_minor_x_labels=False)
#x_label_rotation=20让x 轴上的日期标签顺时针旋转20°,show_minor_x_labels=False则告诉图形不用显示所有的x 轴标签。

line_chart.title = '收盘价(¥)'
line_chart.x_labels = date
N = 20 # x轴坐标每隔20天显示一次
line_chart.x_labels_major = date[::N]
#x_labels_major属性,让x 轴坐标每隔20天显示一次
line_chart.add('收盘价', close)
line_chart.render_to_file('收盘价折线图(¥).svg')

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1712503.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

C++容器之队列(std::queue)

目录 1 概述2 使用实例3 接口使用3.1 construct3.2 empty3.3 size3.4 front3.5 back3.6 push3.7 emplace3.8 pop3.9 swap1 概述 队列是一种容器适配器,专门设计用于在FIFO上下文(先进先出)中操作,其中元素被插入容器的一端并从另一端提取。   队列被实现为容器适配器,容…

给想玩AIGC的小白:教你从0搭一个图文视频生成网站(附插件源码)

Stable Diffusion的发布是AI图像生成发展过程中的一个里程碑&#xff0c;相当于给大众提供了一个可用的高性能模型&#xff0c;让「AI 文本图片生成」变成普通人也能玩转的技术。最近一些网友将网上的真人图片不断喂给模型&#xff0c;让其自主学习&#xff0c;训练出来的效果已…

2024年社会发展、人文艺术与文化国际会议(ICSDHAC 2024)

2024年社会发展、人文艺术与文化国际会议&#xff08;ICSDHAC 2024&#xff09; 会议简介 2024年国际社会发展、人文、艺术和文化会议&#xff08;ICSDHAC 2024&#xff09;将在广州举行。会议旨在为从事社会发展、人文、艺术和文化研究的专家学者提供一个平台&#xff0c;分…

VI 使用替换命令快速注释多行

使用替换命令快速注释多行&#xff1a; 按下 Esc 键确保你在普通模式下。输入 :起始行号,结束行号s/^/#/ 并按 Enter 键。 :起始行号 和 结束行号 分别是你要注释的起始行和结束行的行号。 关于正则 s/^/#/各个部分解释&#xff1a; s/: 这是vi编辑器中的替换命令的开头。s 表…

音视频开发10 FFmpeg 内存模型-AVPacket, AVFrame

从现有的 Packet 拷贝一个新 Packet 的时候&#xff0c;有两种情况&#xff1a; • ①两个 Packet 的 buf 引用的是 同一数据缓存空间 &#xff0c;这时 候要注意数据缓存空间的释放问题&#xff1b; • ②两个 Packet 的 buf 引用不同的数据缓存空间 &#xff0c;每个 Pac…

[ARM-2D 专题] arm-2d配套开发工具准备

arm-2d 提供了配套的图片转换工具img2c.py和字体转换工具ttf2c.py&#xff0c;工具用python语言编写&#xff0c;所以需要先安装python及其相关的支持包。 从python网站可以下载到最新的安装版本&#xff0c;根据你自己的电脑配置选择。 python的相关信息&#xff1a; 官网: ht…

linux系统安装软件

目录 linunx系统安装软件的方法 rpm yun命令 基本介绍 2.安装 升级、卸载的指令完成 linux 系统中如何使用设备 怎么用 创建本地源 在线仓库 第三方在线仓库 linunx系统安装软件的方法 源码安装 类似于 exe rmp安装 安装包 rmp yun安装 rmp 的升级版 源码安装 源码…

多线程新手村4--定时器

定时器是日常开发中很常见的组件&#xff0c;定时器大家可能不知道是干什么的&#xff0c;但是定时炸弹肯定都听过&#xff0c;定个时间&#xff0c;过一段时间后bomb&#xff01;&#xff01;&#xff01;爆炸 定时器的逻辑和这个一样&#xff0c;约定一个时间&#xff0c;这…

Linux服务器安装与配置python环境 最新linux安装python 小白教程

目录 一、下载官网的安装包 二、安装流程 三、配置软连接&#xff08;类似window系统的环境变量&#xff09; 四、可能会出现的问题&#xff1a; 1.ssl连接问题&#xff0c;下图所示&#xff1a; 一、下载官网的安装包 1.官网安装包地址&#xff1a;https://www.python.org/…

回溯算法04(leetcode93、78、90)

参考资料&#xff1a; https://programmercarl.com/0093.%E5%A4%8D%E5%8E%9FIP%E5%9C%B0%E5%9D%80.html 93. 复原 IP 地址 题目描述&#xff1a; 有效 IP 地址 正好由四个整数&#xff08;每个整数位于 0 到 255 之间组成&#xff0c;且不能含有前导 0&#xff09;&#xff0…

突破空间限制,这些远程控制软件为父母送上“手把手”的教导,解决异地办公难题,出差无忧

在现代社会&#xff0c;科技的飞速发展带来了诸多便利&#xff0c;但同时也给一些年长的父母们带来了困扰。 当父母们面对智能手机电脑等高科技产品时&#xff0c;他们往往感到无所适从&#xff0c;而子女们忙于工作、学习或其他原因&#xff0c;常常无法时刻陪伴在父母身边&a…

Java版招投标管理系统源码:优化流程,提升效率,实现全方位项目管理

在现今日益竞争激烈的招标市场中&#xff0c;企业需要一款强大而灵活的招投标管理系统来优化流程、提升效率。我们的招投标管理系统正是为此而生&#xff0c;它集门户管理、立项管理、采购项目管理、公告管理、考核管理、报表管理、评审管理、企业管理、采购管理和系统管理等多…

Android Ktor 网络请求框架

Ktor 是一个由 JetBrains 开发的用于 Kotlin 编程语言的应用框架&#xff0c;旨在创建高性能的异步服务器和客户端应用程序。由于完全基于 Kotlin 语言&#xff0c;Ktor 能够让开发者编写出简洁、可读性强且功能强大的代码&#xff0c;特别适合那些已经熟悉 Kotlin 的开发人员。…

如何利用Firebase Hosting来托管网站

文章目录 如何利用Firebase Hosting来托管网站前提条件详细步骤1. 安装 Firebase CLI2. 登录 Firebase3. 初始化 Firebase 项目4. 准备网站文件5. 部署到 Firebase6. 配置自定义域名&#xff08;可选&#xff09; 常见问题 如何利用Firebase Hosting来托管网站 以下是更详细的…

【领导力SE模型影响地图】如何分辨一个管理者有没有好的领导力? ​

影响地图是以思维导图的形式&#xff0c;在业务目标和交付物之间建立起强关联。 影响地图分为四个层级&#xff1a; 第1层级&#xff1a;目标&#xff08;Why&#xff09;- 想要达成的业务目标。 第2层级&#xff1a;利益相关者&#xff08;Who&#xff09;- 谁能够帮助达成…

基础8 探索JAVA图形编程桌面:邮件操作组件详解

在一个静谧的午后&#xff0c;卧龙和凤雏相邀来到一家古朴典雅的茶馆。茶馆内环境清幽&#xff0c;袅袅的茶香与悠扬的古筝声交织在一起&#xff0c;营造出一种宁静而祥和的氛围。 卧龙和凤雏坐在茶馆的一角&#xff0c;面前的桌子上摆放着一套精致的茶具。茶香四溢&#xff0c…

重构2:重构的原则

最近在看重构2&#xff1a;改善既有代码的设计这本书&#xff0c;对于代码重构指导非常有帮助&#xff0c;然后也是做个笔记记录下&#xff0c;以下是我阅读本书的前两章的时候整理的思维导图&#xff1a;

Leetcode3165. 不包含相邻元素的子序列的最大和(Go中的线段树分治包含多类数据使用maintain进行维护)

题目截图 题目分析 不能取相邻的&#xff0c;就是打家劫舍 然后更改某一个值就是单点更新 更新后&#xff0c;需要更新区间的值 需要注意的是&#xff0c;使用分治时需要考虑到一头一尾的问题&#xff0c;所以有4种情况&#xff08;选or不选在两个位置&#xff09; 这四种情况…

【机器学习系列】掌握随机森林:从基础原理到参数优化的全面指南

目录 目录 一、随机森林简介 (一)随机森林模型的基本原理如下&#xff1a; (二)随机森林模型的优点包括&#xff1a; (三)森林中的树的生成规则如下&#xff1a; (四)在随机森林中&#xff0c;每棵树都使用不同的训练集进行训练&#xff0c;原因如下 随机森林的分类性能&…

【Linux进程篇】Linux内核——程序地址空间的初构

W...Y的主页 &#x1f60a; 代码仓库分享&#x1f495; 程序地址空间回顾 我们在讲C语言的时候&#xff0c;大家应该都见过这样的空间布局图&#xff1a; 为了更好的验证不同的数据在内存中的存储位置&#xff0c;下面这段代码我们可以去实验一下&#xff1a; #include<…