C# yolov8 TensorRT Demo

news2025/1/12 16:16:01

C# yolov8 TensorRT Demo

目录

效果

说明 

项目

代码

下载


效果

说明 

环境

NVIDIA GeForce RTX 4060 Laptop GPU

cuda12.1+cudnn 8.8.1+TensorRT-8.6.1.6

版本和我不一致的需要重新编译TensorRtExtern.dll,TensorRtExtern源码地址:https://github.com/guojin-yan/TensorRT-CSharp-API/tree/TensorRtSharp2.0/src/TensorRtExtern

Windows版 CUDA安装参考:https://blog.csdn.net/lw112190/article/details/137049845

项目

代码

Form2.cs

using OpenCvSharp;
using System;
using System.Collections.Generic;
using System.Diagnostics;
using System.Drawing;
using System.IO;
using System.Threading;
using System.Windows.Forms;
using TensorRtSharp.Custom;

namespace yolov8_TensorRT_Demo
{
    public partial class Form2 : Form
    {
        public Form2()
        {
            InitializeComponent();
        }

        string imgFilter = "*.*|*.bmp;*.jpg;*.jpeg;*.tiff;*.tiff;*.png";

        YoloV8 yoloV8;
        Mat image;

        string image_path = "";
        string model_path;

        string video_path = "";
        string videoFilter = "*.mp4|*.mp4;";
        VideoCapture vcapture;
        VideoWriter vwriter;
        bool saveDetVideo = false;


        /// <summary>
        /// 单图推理
        /// </summary>
        /// <param name="sender"></param>
        /// <param name="e"></param>
        private void button2_Click(object sender, EventArgs e)
        {

            if (image_path == "")
            {
                return;
            }

            button2.Enabled = false;
            pictureBox2.Image = null;
            textBox1.Text = "";

            Application.DoEvents();

            image = new Mat(image_path);

            List<DetectionResult> detResults = yoloV8.Detect(image);

            //绘制结果
            Mat result_image = image.Clone();
            foreach (DetectionResult r in detResults)
            {
                Cv2.PutText(result_image, $"{r.Class}:{r.Confidence:P0}", new OpenCvSharp.Point(r.Rect.TopLeft.X, r.Rect.TopLeft.Y - 10), HersheyFonts.HersheySimplex, 1, Scalar.Red, 2);
                Cv2.Rectangle(result_image, r.Rect, Scalar.Red, thickness: 2);
            }

            if (pictureBox2.Image != null)
            {
                pictureBox2.Image.Dispose();
            }
            pictureBox2.Image = new Bitmap(result_image.ToMemoryStream());
            textBox1.Text = yoloV8.DetectTime();

            button2.Enabled = true;

        }

        /// <summary>
        /// 窗体加载,初始化
        /// </summary>
        /// <param name="sender"></param>
        /// <param name="e"></param>
        private void Form1_Load(object sender, EventArgs e)
        {
            image_path = "test/zidane.jpg";
            pictureBox1.Image = new Bitmap(image_path);

            model_path = "model/yolov8n.engine";

            if (!File.Exists(model_path))
            {
                //有点耗时,需等待
                Nvinfer.OnnxToEngine("model/yolov8n.onnx", 20);
            }

            yoloV8 = new YoloV8(model_path, "model/lable.txt");

        }

        /// <summary>
        /// 选择图片
        /// </summary>
        /// <param name="sender"></param>
        /// <param name="e"></param>
        private void button1_Click_1(object sender, EventArgs e)
        {
            OpenFileDialog ofd = new OpenFileDialog();
            ofd.Filter = imgFilter;
            if (ofd.ShowDialog() != DialogResult.OK) return;

            pictureBox1.Image = null;

            image_path = ofd.FileName;
            pictureBox1.Image = new Bitmap(image_path);

            textBox1.Text = "";
            pictureBox2.Image = null;
        }

        /// <summary>
        /// 选择视频
        /// </summary>
        /// <param name="sender"></param>
        /// <param name="e"></param>
        private void button4_Click(object sender, EventArgs e)
        {
            OpenFileDialog ofd = new OpenFileDialog();
            ofd.Filter = videoFilter;
            ofd.InitialDirectory = Application.StartupPath + "\\test";

            if (ofd.ShowDialog() != DialogResult.OK) return;

            video_path = ofd.FileName;

            button3_Click(null, null);

        }

        /// <summary>
        /// 视频推理
        /// </summary>
        /// <param name="sender"></param>
        /// <param name="e"></param>
        private void button3_Click(object sender, EventArgs e)
        {
            if (video_path == null)
            {
                return;
            }

            textBox1.Text = "开始检测";

            Application.DoEvents();

            Thread thread = new Thread(new ThreadStart(VideoDetection));

            thread.Start();
            thread.Join();

            textBox1.Text = "检测完成!";
        }

        void VideoDetection()
        {
            vcapture = new VideoCapture(video_path);
            if (!vcapture.IsOpened())
            {
                MessageBox.Show("打开视频文件失败");
                return;
            }

            Mat frame = new Mat();
            List<DetectionResult> detResults;

            // 获取视频的fps
            double videoFps = vcapture.Get(VideoCaptureProperties.Fps);
            // 计算等待时间(毫秒)
            int delay = (int)(1000 / videoFps);
            Stopwatch _stopwatch = new Stopwatch();

            if (checkBox1.Checked)
            {
                vwriter = new VideoWriter("out.mp4", FourCC.X264, vcapture.Fps, new OpenCvSharp.Size(vcapture.FrameWidth, vcapture.FrameHeight));
                saveDetVideo = true;
            }
            else {
                saveDetVideo = false;
            }

            while (vcapture.Read(frame))
            {
                if (frame.Empty())
                {
                    MessageBox.Show("读取失败");
                    return;
                }

                _stopwatch.Restart();

                delay = (int)(1000 / videoFps);

                detResults = yoloV8.Detect(frame);

                //绘制结果
                foreach (DetectionResult r in detResults)
                {
                    Cv2.PutText(frame, $"{r.Class}:{r.Confidence:P0}", new OpenCvSharp.Point(r.Rect.TopLeft.X, r.Rect.TopLeft.Y - 10), HersheyFonts.HersheySimplex, 1, Scalar.Red, 2);
                    Cv2.Rectangle(frame, r.Rect, Scalar.Red, thickness: 2);
                }
                Cv2.PutText(frame, "preprocessTime:" + yoloV8.preprocessTime.ToString("F2")+"ms", new OpenCvSharp.Point(10, 30), HersheyFonts.HersheySimplex, 1, Scalar.Red, 2);
                Cv2.PutText(frame, "inferTime:" + yoloV8.inferTime.ToString("F2") + "ms", new OpenCvSharp.Point(10, 70), HersheyFonts.HersheySimplex, 1, Scalar.Red, 2);
                Cv2.PutText(frame, "postprocessTime:" + yoloV8.postprocessTime.ToString("F2") + "ms", new OpenCvSharp.Point(10, 110), HersheyFonts.HersheySimplex, 1, Scalar.Red, 2);
                Cv2.PutText(frame, "totalTime:" + yoloV8.totalTime.ToString("F2") + "ms", new OpenCvSharp.Point(10, 150), HersheyFonts.HersheySimplex, 1, Scalar.Red, 2);
                Cv2.PutText(frame, "video fps:" + videoFps.ToString("F2"), new OpenCvSharp.Point(10, 190), HersheyFonts.HersheySimplex, 1, Scalar.Red, 2);
                Cv2.PutText(frame, "det fps:" + yoloV8.detFps.ToString("F2"), new OpenCvSharp.Point(10, 230), HersheyFonts.HersheySimplex, 1, Scalar.Red, 2);

                if (saveDetVideo)
                {
                    vwriter.Write(frame);
                }

                Cv2.ImShow("DetectionResult", frame);

                // for test
                // delay = 1;

                delay = (int)(delay - _stopwatch.ElapsedMilliseconds);
                if (delay <= 0)
                {
                    delay = 1;
                }
                //Console.WriteLine("delay:" + delay.ToString()) ;
                if (Cv2.WaitKey(delay) == 27)
                {
                    break; // 如果按下ESC,退出循环
                }
            }

            Cv2.DestroyAllWindows();
            vcapture.Release();
            if (saveDetVideo)
            {
                vwriter.Release();
            }

        }
    }

}
 

using OpenCvSharp;
using System;
using System.Collections.Generic;
using System.Diagnostics;
using System.Drawing;
using System.IO;
using System.Threading;
using System.Windows.Forms;
using TensorRtSharp.Custom;

namespace yolov8_TensorRT_Demo
{
    public partial class Form2 : Form
    {
        public Form2()
        {
            InitializeComponent();
        }

        string imgFilter = "*.*|*.bmp;*.jpg;*.jpeg;*.tiff;*.tiff;*.png";

        YoloV8 yoloV8;
        Mat image;

        string image_path = "";
        string model_path;

        string video_path = "";
        string videoFilter = "*.mp4|*.mp4;";
        VideoCapture vcapture;
        VideoWriter vwriter;
        bool saveDetVideo = false;


        /// <summary>
        /// 单图推理
        /// </summary>
        /// <param name="sender"></param>
        /// <param name="e"></param>
        private void button2_Click(object sender, EventArgs e)
        {

            if (image_path == "")
            {
                return;
            }

            button2.Enabled = false;
            pictureBox2.Image = null;
            textBox1.Text = "";

            Application.DoEvents();

            image = new Mat(image_path);

            List<DetectionResult> detResults = yoloV8.Detect(image);

            //绘制结果
            Mat result_image = image.Clone();
            foreach (DetectionResult r in detResults)
            {
                Cv2.PutText(result_image, $"{r.Class}:{r.Confidence:P0}", new OpenCvSharp.Point(r.Rect.TopLeft.X, r.Rect.TopLeft.Y - 10), HersheyFonts.HersheySimplex, 1, Scalar.Red, 2);
                Cv2.Rectangle(result_image, r.Rect, Scalar.Red, thickness: 2);
            }

            if (pictureBox2.Image != null)
            {
                pictureBox2.Image.Dispose();
            }
            pictureBox2.Image = new Bitmap(result_image.ToMemoryStream());
            textBox1.Text = yoloV8.DetectTime();

            button2.Enabled = true;

        }

        /// <summary>
        /// 窗体加载,初始化
        /// </summary>
        /// <param name="sender"></param>
        /// <param name="e"></param>
        private void Form1_Load(object sender, EventArgs e)
        {
            image_path = "test/zidane.jpg";
            pictureBox1.Image = new Bitmap(image_path);

            model_path = "model/yolov8n.engine";

            if (!File.Exists(model_path))
            {
                //有点耗时,需等待
                Nvinfer.OnnxToEngine("model/yolov8n.onnx", 20);
            }

            yoloV8 = new YoloV8(model_path, "model/lable.txt");

        }

        /// <summary>
        /// 选择图片
        /// </summary>
        /// <param name="sender"></param>
        /// <param name="e"></param>
        private void button1_Click_1(object sender, EventArgs e)
        {
            OpenFileDialog ofd = new OpenFileDialog();
            ofd.Filter = imgFilter;
            if (ofd.ShowDialog() != DialogResult.OK) return;

            pictureBox1.Image = null;

            image_path = ofd.FileName;
            pictureBox1.Image = new Bitmap(image_path);

            textBox1.Text = "";
            pictureBox2.Image = null;
        }

        /// <summary>
        /// 选择视频
        /// </summary>
        /// <param name="sender"></param>
        /// <param name="e"></param>
        private void button4_Click(object sender, EventArgs e)
        {
            OpenFileDialog ofd = new OpenFileDialog();
            ofd.Filter = videoFilter;
            ofd.InitialDirectory = Application.StartupPath + "\\test";

            if (ofd.ShowDialog() != DialogResult.OK) return;

            video_path = ofd.FileName;

            button3_Click(null, null);

        }

        /// <summary>
        /// 视频推理
        /// </summary>
        /// <param name="sender"></param>
        /// <param name="e"></param>
        private void button3_Click(object sender, EventArgs e)
        {
            if (video_path == null)
            {
                return;
            }

            textBox1.Text = "开始检测";

            Application.DoEvents();

            Thread thread = new Thread(new ThreadStart(VideoDetection));

            thread.Start();
            thread.Join();

            textBox1.Text = "检测完成!";
        }

        void VideoDetection()
        {
            vcapture = new VideoCapture(video_path);
            if (!vcapture.IsOpened())
            {
                MessageBox.Show("打开视频文件失败");
                return;
            }

            Mat frame = new Mat();
            List<DetectionResult> detResults;

            // 获取视频的fps
            double videoFps = vcapture.Get(VideoCaptureProperties.Fps);
            // 计算等待时间(毫秒)
            int delay = (int)(1000 / videoFps);
            Stopwatch _stopwatch = new Stopwatch();

            if (checkBox1.Checked)
            {
                vwriter = new VideoWriter("out.mp4", FourCC.X264, vcapture.Fps, new OpenCvSharp.Size(vcapture.FrameWidth, vcapture.FrameHeight));
                saveDetVideo = true;
            }
            else {
                saveDetVideo = false;
            }

            while (vcapture.Read(frame))
            {
                if (frame.Empty())
                {
                    MessageBox.Show("读取失败");
                    return;
                }

                _stopwatch.Restart();

                delay = (int)(1000 / videoFps);

                detResults = yoloV8.Detect(frame);

                //绘制结果
                foreach (DetectionResult r in detResults)
                {
                    Cv2.PutText(frame, $"{r.Class}:{r.Confidence:P0}", new OpenCvSharp.Point(r.Rect.TopLeft.X, r.Rect.TopLeft.Y - 10), HersheyFonts.HersheySimplex, 1, Scalar.Red, 2);
                    Cv2.Rectangle(frame, r.Rect, Scalar.Red, thickness: 2);
                }
                Cv2.PutText(frame, "preprocessTime:" + yoloV8.preprocessTime.ToString("F2")+"ms", new OpenCvSharp.Point(10, 30), HersheyFonts.HersheySimplex, 1, Scalar.Red, 2);
                Cv2.PutText(frame, "inferTime:" + yoloV8.inferTime.ToString("F2") + "ms", new OpenCvSharp.Point(10, 70), HersheyFonts.HersheySimplex, 1, Scalar.Red, 2);
                Cv2.PutText(frame, "postprocessTime:" + yoloV8.postprocessTime.ToString("F2") + "ms", new OpenCvSharp.Point(10, 110), HersheyFonts.HersheySimplex, 1, Scalar.Red, 2);
                Cv2.PutText(frame, "totalTime:" + yoloV8.totalTime.ToString("F2") + "ms", new OpenCvSharp.Point(10, 150), HersheyFonts.HersheySimplex, 1, Scalar.Red, 2);
                Cv2.PutText(frame, "video fps:" + videoFps.ToString("F2"), new OpenCvSharp.Point(10, 190), HersheyFonts.HersheySimplex, 1, Scalar.Red, 2);
                Cv2.PutText(frame, "det fps:" + yoloV8.detFps.ToString("F2"), new OpenCvSharp.Point(10, 230), HersheyFonts.HersheySimplex, 1, Scalar.Red, 2);

                if (saveDetVideo)
                {
                    vwriter.Write(frame);
                }

                Cv2.ImShow("DetectionResult", frame);

                // for test
                // delay = 1;

                delay = (int)(delay - _stopwatch.ElapsedMilliseconds);
                if (delay <= 0)
                {
                    delay = 1;
                }
                //Console.WriteLine("delay:" + delay.ToString()) ;
                if (Cv2.WaitKey(delay) == 27)
                {
                    break; // 如果按下ESC,退出循环
                }
            }

            Cv2.DestroyAllWindows();
            vcapture.Release();
            if (saveDetVideo)
            {
                vwriter.Release();
            }

        }
    }

}

YoloV8.cs

using OpenCvSharp;
using OpenCvSharp.Dnn;
using System;
using System.Collections.Generic;
using System.Diagnostics;
using System.IO;
using System.Linq;
using System.Text;
using TensorRtSharp.Custom;

namespace yolov8_TensorRT_Demo
{
    public class YoloV8
    {

        float[] input_tensor_data;
        float[] outputData;
        List<DetectionResult> detectionResults;

        int input_height;
        int input_width;

        Nvinfer predictor;

        string[] class_names;
        int class_num;
        int box_num;

        float conf_threshold;
        float nms_threshold;

        float ratio_height;
        float ratio_width;

        public double preprocessTime;
        public double inferTime;
        public double postprocessTime;
        public double totalTime;
        public double detFps;

        public String DetectTime()
        {
            StringBuilder stringBuilder = new StringBuilder();
            stringBuilder.AppendLine($"Preprocess: {preprocessTime:F2}ms");
            stringBuilder.AppendLine($"Infer: {inferTime:F2}ms");
            stringBuilder.AppendLine($"Postprocess: {postprocessTime:F2}ms");
            stringBuilder.AppendLine($"Total: {totalTime:F2}ms");

            return stringBuilder.ToString();
        }

        public YoloV8(string model_path, string classer_path)
        {
            predictor = new Nvinfer(model_path);

            class_names = File.ReadAllLines(classer_path, Encoding.UTF8);
            class_num = class_names.Length;

            input_height = 640;
            input_width = 640;

            box_num = 8400;

            conf_threshold = 0.25f;
            nms_threshold = 0.5f;

            detectionResults = new List<DetectionResult>();
        }

        void Preprocess(Mat image)
        {
            //图片缩放
            int height = image.Rows;
            int width = image.Cols;
            Mat temp_image = image.Clone();
            if (height > input_height || width > input_width)
            {
                float scale = Math.Min((float)input_height / height, (float)input_width / width);
                OpenCvSharp.Size new_size = new OpenCvSharp.Size((int)(width * scale), (int)(height * scale));
                Cv2.Resize(image, temp_image, new_size);
            }
            ratio_height = (float)height / temp_image.Rows;
            ratio_width = (float)width / temp_image.Cols;
            Mat input_img = new Mat();
            Cv2.CopyMakeBorder(temp_image, input_img, 0, input_height - temp_image.Rows, 0, input_width - temp_image.Cols, BorderTypes.Constant, 0);

            //归一化
            input_img.ConvertTo(input_img, MatType.CV_32FC3, 1.0 / 255);

            input_tensor_data = Common.ExtractMat(input_img);

            input_img.Dispose();
            temp_image.Dispose();
        }

        void Postprocess(float[] outputData)
        {
            detectionResults.Clear();

            float[] data = Common.Transpose(outputData, class_num + 4, box_num);

            float[] confidenceInfo = new float[class_num];
            float[] rectData = new float[4];

            List<DetectionResult> detResults = new List<DetectionResult>();

            for (int i = 0; i < box_num; i++)
            {
                Array.Copy(data, i * (class_num + 4), rectData, 0, 4);
                Array.Copy(data, i * (class_num + 4) + 4, confidenceInfo, 0, class_num);

                float score = confidenceInfo.Max(); // 获取最大值

                int maxIndex = Array.IndexOf(confidenceInfo, score); // 获取最大值的位置

                int _centerX = (int)(rectData[0] * ratio_width);
                int _centerY = (int)(rectData[1] * ratio_height);
                int _width = (int)(rectData[2] * ratio_width);
                int _height = (int)(rectData[3] * ratio_height);

                detResults.Add(new DetectionResult(
                   maxIndex,
                   class_names[maxIndex],
                   new Rect(_centerX - _width / 2, _centerY - _height / 2, _width, _height),
                   score));
            }

            //NMS
            CvDnn.NMSBoxes(detResults.Select(x => x.Rect), detResults.Select(x => x.Confidence), conf_threshold, nms_threshold, out int[] indices);
            detResults = detResults.Where((x, index) => indices.Contains(index)).ToList();

            detectionResults = detResults;
        }

        internal List<DetectionResult> Detect(Mat image)
        {

            var t1 = Cv2.GetTickCount();

            Stopwatch stopwatch = new Stopwatch();
            stopwatch.Start();

            Preprocess(image);

            preprocessTime = stopwatch.Elapsed.TotalMilliseconds;
            stopwatch.Restart();

            predictor.LoadInferenceData("images", input_tensor_data);

            predictor.infer();

            inferTime = stopwatch.Elapsed.TotalMilliseconds;
            stopwatch.Restart();

            outputData = predictor.GetInferenceResult("output0");

            Postprocess(outputData);

            postprocessTime = stopwatch.Elapsed.TotalMilliseconds;
            stopwatch.Stop();

            totalTime = preprocessTime + inferTime + postprocessTime;

            detFps = (double)stopwatch.Elapsed.TotalSeconds / (double)stopwatch.Elapsed.Ticks;

            var t2 = Cv2.GetTickCount();

            detFps = 1 / ((t2 - t1) / Cv2.GetTickFrequency());

            return detectionResults;

        }

    }
}

下载

源码下载

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1706172.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

《爷爷的信》获短片金奖:电影新星的摇篮与短片的春天

随着上汽大众杯澳涞坞全球青年电影短片大赛金奖的公布&#xff0c;我们迎来了短片创作的一个崭新里程碑。这一赛事不仅为青年电影人搭建了一个展示才华的舞台&#xff0c;更预示着短片艺术即将迈入一个繁荣的新纪元。 澳涞坞集团此次大赛的举办&#xff0c;是对青年创作力量的…

美国西储大学(CRWU)轴承故障诊断——连续小波(CWT)变换

1.数据集介绍 2.代码 import random import matplotlib matplotlib.use(Agg) from scipy.io import loadmat import numpy as npdef split(DATA):step = 400;size = 1024;data = []for i in range(1, len(DATA) - size, step):data1 = DATA[i:i + size]data.append(data1)rand…

【NumPy】深入理解NumPy的cov函数:计算协方差矩阵的完整指南

&#x1f9d1; 博主简介&#xff1a;阿里巴巴嵌入式技术专家&#xff0c;深耕嵌入式人工智能领域&#xff0c;具备多年的嵌入式硬件产品研发管理经验。 &#x1f4d2; 博客介绍&#xff1a;分享嵌入式开发领域的相关知识、经验、思考和感悟&#xff0c;欢迎关注。提供嵌入式方向…

全网首发!精选32个最新计算机毕设实战项目(附源码),拿走就用!

Hi 大家好&#xff0c;马上毕业季又要开始了&#xff0c;陆陆续续又要准备毕业设计了&#xff0c;有些学生轻而易举就搞定了&#xff0c;有些学生压根没有思路怎么做&#xff0c;可能是因为技术问题&#xff0c;也可能是因为经验问题。 计算机毕业相关的设计最近几年类型比较多…

基于半花青的近红外荧光材料

一、基于半花青的酯酶响应的光声探针&#xff1a; 参考文献&#xff1a;De Novo Design of Activatable Photoacoustic/Fluorescent Probes for Imaging Acute Lung Injury In Vivo | Analytical Chemistry (acs.org) 1.季铵盐的结构改造&#xff1a; 之前的基于半花青的近红外…

Linux网络_网络基础预备

文章目录 前言一、网络基础知识网络协议协议分层OSI七层模型TCP/IP五层(或四层)模型 认识IP地址认识MAC地址数据包封装和分用 前言 Linux系统编程已经告一段落&#xff0c;但是我们在学习LInux系统编程所积累的知识&#xff0c;将仍然与后面网络知识强相关&#xff0c;学习网络…

Nature plants|做完单细胞还可以做哪些下游验证实验

中国科学院分子植物科学中心与南方科技大学在《Nature Plants》期刊上(IF18.0)发表了关于苜蓿根瘤共生感知和早期反应的文章&#xff0c;该研究首次在单细胞水平解析了结瘤因子处理蒺藜苜蓿&#xff08;Medicago truncatula&#xff09;根系24小时内特异细胞类型的基因表达变化…

c++(四)

c&#xff08;四&#xff09; 运算符重载可重载的运算符不可重载的运算符运算符重载的格式运算符重载的方式友元函数进行运算符重载成员函数进行运算符重载 模板定义的格式函数模板类模板 标准模板库vector向量容器STL中的listmap向量容器 运算符重载 运算符相似&#xff0c;运…

上周暗网0day售卖情报一览

黑客声称以 1,700,000 美元出售 Outlook RCE 漏洞 0Day 令人担忧的是&#xff0c;一个名为“Cvsp”的威胁参与者宣布出售所谓的 Outlook 远程代码执行 (RCE) 漏洞 0day。这一所谓的漏洞旨在针对跨 x86 和 x64 架构的各种 Microsoft Office 版本&#xff0c;对全球用户构成重大安…

Facebook之魅:数字社交的体验

在当今数字化时代&#xff0c;Facebook作为全球最大的社交平台之一&#xff0c;承载着数十亿用户的社交需求和期待。它不仅仅是一个简单的网站或应用程序&#xff0c;更是一个将世界各地的人们连接在一起的社交网络&#xff0c;为用户提供了丰富多彩、无与伦比的数字社交体验。…

什么是NAND Flash ECC?

在存储芯片行业&#xff0c;数据完整性和可靠性是至关重要的。为了确保数据的准确性和防止数据丢失&#xff0c;ECC&#xff08;错误校正码&#xff09;在NAND Flash存储中扮演了关键角色。MK米客方德将为您解答NAND Flash ECC的基本概念、工作原理及其在实际应用中的重要性。 …

RGB 平均值统计

任务&#xff1a;有一一对应的图片多组如下&#xff0c;希望统计灰色部分原有grb平均值&#xff0c;彩色部分rgb平均值。 方法&#xff1a;由下图对各个像素分析&#xff0c;分为3类&#xff0c;并记录坐标&#xff0c;根据坐标统计上图的rgb平均值&#xff0c;结果放在一张Exc…

群晖异地组网-节点小宝搭建使用指南(全平台异地组网)

内网穿透&#xff0c;对于经常传输小文件、远程控制NAS的朋友来说是够用了&#xff0c;但是对经常异地端到端大文件传输需求的朋友来说就差点事&#xff0c;有没有一种免费、速度快、配置简单得方式的呢&#xff0c;答案是有的。节点小宝异地组网是一个非常不错的方式&#xff…

表空间[MAIN]处于脱机状态

达梦数据库还原后&#xff0c;访问数据库报错&#xff1a;表空间[MAIN]处于脱机状态 解决方法&#xff1a; 1&#xff1a;检查备份文件 DMRMAN 中使用 CHECK 命令对备份集进行校验&#xff0c;校验备份集是否存在及合法。 ##语法&#xff1a;CHECK BACKUPSET <备份集目录…

大字体学生出勤记录系统网页HTML源码

源码介绍 上课需要一个个点名记录出勤情况&#xff0c;就借助AI制作了一个网页版学生出勤记录系统&#xff0c; 大字体显示学生姓名和照片&#xff0c;让坐在最后排学生也能看清楚&#xff0c;显示姓名同时会语音播报姓名&#xff0c; 操作很简单&#xff0c;先导入学生姓名…

信息抽取模型TPLinker

1.motivation 早期传统方法首先抽取实体再抽取它们之间的关系&#xff0c;但是忽略了两个任务之间的关联。而后期采取的联合模型都存在着一个严重问题&#xff1a;训练时&#xff0c;真实值作为上下文传入训练&#xff1b;推理时&#xff0c;模型自身生成的值作为上下文传入&a…

代码随想录算法训练营第21天|● 530.二叉搜索树的最小绝对差 ● 501.二叉搜索树中的众数 ● 236. 二叉树的最近公共祖先

二叉搜索树的最小绝对差 题目连接 https://leetcode.cn/problems/minimum-absolute-difference-in-bst/ 思路&#xff1a; 利用二叉搜索树的中序遍历的特性&#xff0c;将二叉树转成有序数组&#xff0c;进而求任意两个数的最小绝对差。 代码 /*** Definition for a bina…

邮箱调用接口的服务有哪些?怎么配置接口?

邮箱调用接口安全性如何保障&#xff1f;使用邮箱服务器的方法&#xff1f; 邮箱调用接口为各种应用和系统提供了便捷的电子邮件发送与接收功能。选择合适的邮箱调用接口服务可以大大提升工作效率和用户体验。本AokSend将探讨一些主要的邮箱调用接口服务。 邮箱调用接口&…

本杀小程序开发实战手册:从构思到上线

一、引言 随着移动互联网的快速发展&#xff0c;剧本杀作为一种新兴的娱乐方式&#xff0c;受到了越来越多年轻人的喜爱。为了满足市场需求&#xff0c;开发一款剧本杀小程序成为了许多创业者和开发者的选择。本文将从构思、设计、开发到上线等方面&#xff0c;为您详细解析剧…

庆余年2火了,却把热爱开源的程序员给坑了

庆余年 2 终于开播了&#xff0c;作为一名剧粉&#xff0c;苦等了五年终于盼来了。开播即爆火&#xff0c;虽然首播的几集剧情有些拖沓&#xff0c;不过也不影响这是一部好剧。 然而&#xff0c;庆余年 2 的爆火&#xff0c;却把 npmmirror 镜像站给坑惨了。npmmirror 镜像站&…