Intel HDSLB 高性能四层负载均衡器 — 基本原理和部署配置

news2024/11/18 19:14:46

目录

文章目录

  • 目录
  • 前言
  • HDSLB-DPVS 的基本原理
    • LVS
    • DPDK
    • DPVS
    • HDSLB-DPVS
  • HDSLB 的部署配置
    • 硬件要求
    • 软件要求
    • 编译安装 DPDK
    • 编译安装 HDSLB-DPVS
    • 配置大页内存
    • 配置网卡
    • 配置 HDSLB-DPVS
    • 启动 HDSLB-DPVS
  • 测试 HDSLB-DPVS Two-arm Full-NAT 模式
  • 问题分析
  • 最后

前言

在上一篇《Intel HDSLB 高性能四层负载均衡器 — 快速入门和应用场景》中,我们着重介绍了 HDSLB(High Density Scalable Load Balancer,高密度可扩展的负载均衡器)作为新一代高性能四层负载均衡器的需求定位、分析了 HDSLB 在云计算和边缘计算应用场景中的特性优势,以及解读了 HDSLB 的性能测试数据。

再进一步的,在本篇中我们主要关注 HDSLB 的基本运行原理和部署配置方式,更侧重于实际的操作。为了让更广泛的开发者们都能够快捷方便的对 HDSLB 展开研究,所以在本篇中会采用 HDSLB-DPVS 开源版本来进行介绍。

HDSLB-DPVS 的基本原理

顾名思义,HDSLB-DPVS 是基于 DPVS 进行二次开发的项目。而 DPVS,又称为 DPDK-LVS,是一个参考了 LVS 内核态四层负载均衡器设计原理并基于 DPDK 用户态数据面加速框架进行开发的四层负载均衡器。可见,HDSLB-DPVS 的技术堆栈主要由以下 4 个部分组成:

  1. LVS
  2. DPDK
  3. DPVS
  4. HDSLB-DPVS

要清晰的理解 HDSLB-DPVS 的基本实现原理,我们需要从头开始讲起。

LVS

LVS(Linux Virtual Server,Linux 虚拟服务器)是一个诞生于 1998 年的四层负载均衡器开源项目,其目标是使用 Local Balancer 技术和 Server Cluster 技术来实现一个具有良好可伸缩性(Scalability)、可靠性(Reliability)和可管理性(Manageability)的 Virtual Server。

  • LVS:https://github.com/alibaba/LVS

在这里插入图片描述

现在来看,虽然 LVS 基于 Kernel 实现的数据面性能已经不合时宜,但在逻辑架构的设计层面,LVS 的核心术语依旧沿用至今,包括:

  • VS(Virtual Server,虚拟服务器):VS 是由 DS 和 RS 组合构成的一个逻辑概念,VS 最终通过一个 VIP 对外部 Clients 提供服务。
  • DS(Director Server,流量调度服务器):是充当 LB 流量入口的服务器,负责负载均衡策略的执行和流量分发。所以也称为 FE(前端服务器)。
  • RS(Real Server,真实服务器):RS 是真正用于处理请求流量的服务器,也称为 BE(后端服务器)。
  • VIP(Virtual IP,虚拟 IP 地址):VS 向外部 Client 提供服务的 IP 地址。
  • DIP(Director IP,直连 IP 地址):Director Server 向内部与 RS 进行通信的 IP 地址。
  • RIP(Real IP,真实 IP 地址):RS 与 DS 互通的 IP 地址。
  • CIP(Client IP,客户端的 IP 地址)
  • NAT 反向代理转发模式
  • IP Tunneling 透明转发模式
  • DR 三角流量转发模式
  • 等等

在这里插入图片描述

关于 LVS 更详细的内容,推荐阅读:《LVS & Keepalived 实现 L4 高可用负载均衡器》

DPDK

随着 2010 年,IEEE 802.3 标准委员会发布了 40GbE 和 100GbE 802.3ba 以太网标准后,数据中心正式进入了 100G 时代。从那时起,Linux 内核协议栈的网络处理性能就一直备受挑战。先看几个数据:

  • CPU 访问 Main Memory 所需要的时长为 65 纳秒。
  • 跨 NUMA node 的 Main Memory 数据 Copy 所需要的时长为 40 纳秒。
  • CPU 处理一次硬件中断所需要的时间为 100 微秒。

但实际上,100G 网卡线速为 2 亿 PPS,即每个包处理的时间不能超过 50 纳秒。

可见,基于 Kernel 的数据面已经走到了拐点,DPDK 为此而生,并通过下列加速技术实现了 100G 线性转发。

  1. 使用用户态协议栈代替内核协议栈:Kernel by-pass (user space implementation).
  2. 使用轮训代替中断:Polling instead of interrupt.
  3. 使用多核编程代替多线程:Share-nothing, per-CPU for key data (lockless).
  4. 跨 CPU 无锁通信:Lockless message for high performance IPC.
  5. RX Steering and CPU affinity (avoid context switch).
  6. Zero Copy (avoid packet copy and syscalls).
  7. Batching TX/RX.
  8. etc…
  • DPDK:https://github.com/DPDK/dpdk

在这里插入图片描述

关于 DPDK 更详细的内容,推荐阅读:《DPDK — 数据加速方案的核心思想》

DPVS

综上,由于 LVS 的数据面是一个 Linux Kernel Module(ipvs),其性能无法满足现代化需求,所以国内公司 iqiyi 基于 DPDK 开发了 DPVS。值得一提的是,由于 DPVS 项目由国内公司开源和维护,所以其开源社区对中文开发者也会更加友好。

  • DPVS:https://github.com/iqiyi/dpvs

在这里插入图片描述

除了性能方面的优化之外,在功能层面,DPVS 也提供了更丰富的能力,包括:

  • L4 Load Balancer, including FNAT, DR, Tunnel, DNAT modes, etc.
  • SNAT mode for Internet access from internal network.
  • NAT64 forwarding in FNAT mode for quick IPv6 adaptation without application changes.
  • Different schedule algorithms like RR, WLC, WRR, MH(Maglev Hashing), Conhash(Consistent Hashing) etc.
  • User-space Lite IP stack (IPv4/IPv6, Routing, ARP, Neighbor, ICMP …).
  • Support KNI, VLAN, Bonding, Tunneling for different IDC environment.
  • Security aspect, support TCP syn-proxy, Conn-Limit, black-list, white-list.
  • QoS: Traffic Control.

在软件架构方面,DPVS 沿用了数据分离架构和基于 Keepalived 的 Master-Backup 高可用架构。

  • ipvsadm:用于 VS、RS 等逻辑资源对象的管理。
  • dpip:用于 IP、Route 等基础网络资源的管理。
  • keepalived:用于提供基于 VRRP 协议的主备高可用。

在这里插入图片描述

HDSLB-DPVS

HDSLB-DPVS 和 DPVS 本身都作为高性能负载均衡器,那么两者的本质区别是什么呢?答案就是更强大的性能!

  • HDSLB-DPVS :https://github.com/intel/high-density-scalable-load-balancer/tree/main

在这里插入图片描述

通常的,我们可以使用 RBP(Ratio of Bandwidth and Performance growth rate,带宽性能增速比)来定义网络带宽的增速比上 CPU 性能的增速,即:RBP=BW GR/Perf. GR。

如下图所示。2010 年前,网络的带宽年化增长大约是 30%,到 2015 年增长到 35%,然后在近年达到 45%。相对应的,CPU 的性能增长从 10 年前的 23%,下降到 12%,并在近年直接降低到 3.5%。在这 3 个时间段内,RBP 指标从 RBP~1 附近(I/O 压力尚未显现出来),上升到 RBP~3,并在近年超过了 RBP~10。

可见,CPU 几乎已经无法直接应对网络带宽的增速。而围绕 CPU 进行纯软件加速的 DPDK 框架正在面临挑战。

在这里插入图片描述

回到 DPVS 和 HDSLB-DPVS 的本质区别这个问题。在理论设计层面,DPVS 的目标是基于 DPDK 框架实现了软件层面的加速,而 HDSLB-DPVS 则更进一步的将这种加速融入到 CPU 和 NIC 互相结合的硬件平台之上,并实现了 “高密度” 和 “可扩展” 这 2 大目标:

  • 高密度:指的是单个 HDSLB 节点的 TCP 并发连接数量和吞吐量特别高。
  • 可拓展:指的是其性能可以随着 CPU Core 的数量或者资源总量的增加而线性拓展。

实践方面,在最新型的 Intel Xeon CPU(e.g. 3rd & 4th generation)和 E810 100G NIC 硬件平台上,实现了:

  • Concurrent Session: 100M level / Node
  • Throughput: > 8Mpps / Core @FNAT
  • TCP Session Est. Rate > 800K / Core
  • Linear growth

对此,我们在《Intel HDSLB 高性能四层负载均衡器 — 快速入门和应用场景》文中已经对 HDSLB-DPVS 超越前代的性能数据进行了分析,这里不在赘述。

HDSLB 的部署配置

硬件要求

下面进入到实践环节,主要关注 HDSLB-DPVS 的编译、部署和配置。为了降低开发者门槛,所以本文主要使用了开发机低门槛配置来进行部署和调试。

物理测试机性能推荐虚拟开发机低门槛推荐
CPU 架构Intel Xeon CPU 四代支持 AVX512 系列指令集的 Intel CPU 型号,例如:Skylake 等
CPU 资源2NUMA,关闭超线程1NUMA,4C
Memory 资源128G16G
NIC 型号Intel E810 100GVirtI/O 驱动,支持多队列

本文 CPU 信息:

$ lscpu
Architecture:                    x86_64
CPU op-mode(s):                  32-bit, 64-bit
Byte Order:                      Little Endian
Address sizes:                   46 bits physical, 57 bits virtual
CPU(s):                          4
On-line CPU(s) list:             0-3
Thread(s) per core:              2root@l4lb:~# lscpu
Architecture:                    x86_64
CPU op-mode(s):                  32-bit, 64-bit
Byte Order:                      Little Endian
Address sizes:                   46 bits physical, 57 bits virtual
CPU(s):                          4
On-line CPU(s) list:             0-3
Thread(s) per core:              2
Core(s) per socket:              2
Socket(s):                       1
NUMA node(s):                    1
Vendor ID:                       GenuineIntel
CPU family:                      6
Model:                           106
Model name:                      Intel(R) Xeon(R) Platinum 8350C CPU @ 2.60GHz
Stepping:                        6
CPU MHz:                         2599.994
BogoMIPS:                        5199.98
Hypervisor vendor:               KVM
Virtualization type:             full
L1d cache:                       96 KiB
L1i cache:                       64 KiB
L2 cache:                        2.5 MiB
L3 cache:                        48 MiB
NUMA node0 CPU(s):               0-3
Vulnerability Itlb multihit:     Not affected
Vulnerability L1tf:              Not affected
Vulnerability Mds:               Not affected
Vulnerability Meltdown:          Not affected
Vulnerability Mmio stale data:   Vulnerable: Clear CPU buffers attempted, no microcode; SMT Host state unknown
Vulnerability Retbleed:          Not affected
Vulnerability Spec store bypass: Vulnerable
Vulnerability Spectre v1:        Mitigation; usercopy/swapgs barriers and __user pointer sanitization
Vulnerability Spectre v2:        Vulnerable, IBPB: disabled, STIBP: disabled, PBRSB-eIBRS: Vulnerable
Vulnerability Srbds:             Not affected
Vulnerability Tsx async abort:   Not affected
Flags:                           fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ss ht syscall nx pdpe1gb rdtscp lm constant_ts
                                 c arch_perfmon rep_good nopl xtopology cpuid tsc_known_freq pni pclmulqdq ssse3 fma cx16 pcid sse4_1 sse4_2 x2apic movbe popcnt tsc_deadline_tim
                                 er aes xsave avx f16c rdrand hypervisor lahf_lm abm 3dnowprefetch cpuid_fault invpcid_single ssbd ibrs ibpb ibrs_enhanced fsgsbase tsc_adjust bm
                                 i1 avx2 smep bmi2 erms invpcid avx512f avx512dq rdseed adx smap avx512ifma clflushopt clwb avx512cd sha_ni avx512bw avx512vl xsaveopt xsavec xge
                                 tbv1 xsaves arat avx512vbmi umip pku ospke avx512_vbmi2 gfni vaes vpclmulqdq avx512_vnni avx512_bitalg avx512_vpopcntdq rdpid arch_capabilities

软件要求

  • OS:Ubuntu 20.04.3
  • Kernel:5.4.0-110-generic
  • GCC:9.4.0
  • DPDK:20.08

值的注意的是,Ubuntu /boot 分区要大于 2G,避免出现内核升级故障问题。参考引用:https://askubuntu.com/questions/1207958/error-24-write-error-cannot-write-compressed-block

本文 OS 信息:

# 更新系统
$ sudo apt-get update -y && sudo apt-get upgrade -y
# Dev
$ sudo apt-get install git vim wget patch unzip -y
# popt
$ sudo apt-get install libpopt-dev -y
# NUMA
$ sudo apt-get install libnuma-dev -y
$ sudo apt-get install numactl -y
# Pcap
$ sudo apt-get install libpcap-dev -y 
# SSL
$ sudo apt-get install libssl-dev -y


# Kernel 5.4.0-136
$ uname -r
5.4.0-136-generic

$ ll /boot/vmlinuz*
lrwxrwxrwx 1 root root       25 Dec 27  2022 /boot/vmlinuz -> vmlinuz-5.4.0-136-generic
-rw------- 1 root root 13660416 Aug 10  2022 /boot/vmlinuz-5.4.0-125-generic
-rw------- 1 root root 13668608 Nov 24  2022 /boot/vmlinuz-5.4.0-136-generic
-rw------- 1 root root 11657976 Apr 21  2020 /boot/vmlinuz-5.4.0-26-generic
lrwxrwxrwx 1 root root       25 Dec 27  2022 /boot/vmlinuz.old -> vmlinuz-5.4.0-125-generic

$ dpkg -l | egrep "linux-(signed|modules|image|headers)" | grep $(uname -r)
ii  linux-headers-5.4.0-136-generic       5.4.0-136.153                     amd64        Linux kernel headers for version 5.4.0 on 64 bit x86 SMP
ii  linux-image-5.4.0-136-generic         5.4.0-136.153                     amd64        Signed kernel image generic
ii  linux-modules-5.4.0-136-generic       5.4.0-136.153                     amd64        Linux kernel extra modules for version 5.4.0 on 64 bit x86 SMP
ii  linux-modules-extra-5.4.0-136-generic 5.4.0-136.153                     amd64        Linux kernel extra modules for version 5.4.0 on 64 bit x86 SMP

# GCC 9.4.0
$ gcc --version
gcc (Ubuntu 9.4.0-1ubuntu1~20.04.1) 9.4.0
Copyright (C) 2019 Free Software Foundation, Inc.
This is free software; see the source for copying conditions.  There is NO
warranty; not even for MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.

# 文件描述符
$ ulimit -n 655350
$ echo "ulimit -n 655350" >> /etc/rc.local
$ chmod a+x /etc/rc.local

编译安装 DPDK

DPDK 安装部署的详细内容,推荐阅读:《DPDK — 安装部署》。

$ cd /root/
$ git clone https://github.com/intel/high-density-scalable-load-balancer hdslb

$ wget http://fast.dpdk.org/rel/dpdk-20.08.tar.xz
$ tar vxf dpdk-20.08.tar.xz

# 打补丁
$ cp hdslb/patch/dpdk-20.08/*.patch dpdk-20.08/
$ cd dpdk-20.08/
$ patch -p 1 < 0002-support-large_memory.patch
$ patch -p 1 < 0003-net-i40e-ice-support-rx-markid-ofb.patch

# 编译
$ make config T=x86_64-native-linuxapp-gcc MAKE_PAUSE=n
$ make MAKE_PAUSE=n -j 4

编译安装 HDSLB-DPVS

HDSLB-DPVS 的编译安装过程中需要依赖许多 CPU 硬件加速指令,例如:AVX2、AVX512 等等。要编译成功,有 2 方面的要求:

  1. 要求 CPU 硬件支持:推荐使用 Intel Xeon 数据中心系列,例如:Intel Xeon Gold。
  2. 要求 GCC 版本支持:推荐采用版本较高的 GCC,例如本文中的 9.4.0。
$ cd dpdk-20.08/
$ export RTE_SDK=$PWD

$ cd hdslb/
$ chmod +x tools/keepalived/configure

# 编译安装
$ make -j 4
$ make install

配置大页内存

在物理机测试环境中,大页内存应该尽可能的给,HDSLB 的 LB connect pool 需要分配大量的内存,这与实际的性能规格有直接关系。

$ mkdir /mnt/huge_1GB
$ mount -t hugetlbfs nodev /mnt/huge_1GB

$ vim /etc/fstab
nodev /mnt/huge_1GB hugetlbfs pagesize=1GB 0 0

$ # for NUMA machine
$ echo 15 > /sys/devices/system/node/node0/hugepages/hugepages-1048576kB/nr_hugepages

$ vim /etc/default/grub
GRUB_CMDLINE_LINUX_DEFAULT="${GRUB_CMDLINE_LINUX_DEFAULT} default_hugepagesz=1G hugepagesz=1G hugepages=15" 

$ sudo update-grub
$ init 6

$ cat /proc/meminfo | grep Huge
AnonHugePages:         0 kB
ShmemHugePages:        0 kB
FileHugePages:         0 kB
HugePages_Total:      13
HugePages_Free:       13
HugePages_Rsvd:        0
HugePages_Surp:        0
Hugepagesize:    1048576 kB
Hugetlb:        13631488 kB

$ free -h
              total        used        free      shared  buff/cache   available
Mem:           15Gi        13Gi       2.0Gi       2.0Mi       408Mi       2.2Gi
Swap:            0B          0B          0B

配置网卡

$ modprobe vfio-pci
$ modprobe vfio enable_unsafe_noiommu_mode=1 # https://stackoverflow.com/questions/75840973/dpdk20-11-3-cannot-bind-device-to-vfio-pci
$ echo 1 > /sys/module/vfio/parameters/enable_unsafe_noiommu_mode

$ cd dpdk-20.08/
$ export RTE_SDK=$PWD
$ insmod ${RTE_SDK}/build/kmod/rte_kni.ko

$ ${RTE_SDK}/usertools/dpdk-devbind.py --status-dev net
Network devices using kernel driver
===================================
0000:01:00.0 'Virtio network device 1000' if=eth0 drv=virtio-pci unused=vfio-pci *Active*
0000:03:00.0 'Virtio network device 1000' if=eth1 drv=virtio-pci unused=vfio-pci
0000:04:00.0 'Virtio network device 1000' if=eth2 drv=virtio-pci unused=vfio-pci


$ ifconfig eth1 down # 0000:03:00.0
$ ifconfig eth2 down # 0000:04:00.0
$ ${RTE_SDK}/usertools/dpdk-devbind.py -b vfio-pci 0000:03:00.0 0000:04:00.0

$ ${RTE_SDK}/usertools/dpdk-devbind.py --status-dev net
Network devices using DPDK-compatible driver
============================================
0000:03:00.0 'Virtio network device 1000' drv=vfio-pci unused=
0000:04:00.0 'Virtio network device 1000' drv=vfio-pci unused=
Network devices using kernel driver
===================================
0000:01:00.0 'Virtio network device 1000' if=eth0 drv=virtio-pci unused=vfio-pci *Active*

配置 HDSLB-DPVS

$ cp conf/hdslb.conf.sample /etc/hdslb.conf

# 配置解析
$ cat /etc/hdslb.conf
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
! This is hdslb default configuration file.
!
! The attribute "<init>" denotes the configuration item at initialization stage. Item of
! this type is configured oneshoot and not reloadable. If invalid value configured in the
! file, hdslb would use its default value.
!
! Note that hdslb configuration file supports the following comment type:
!   * line comment: using '#" or '!'
!   * inline range comment: using '<' and '>', put comment in between
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

! global config
global_defs {
    log_level   DEBUG # 方便调试
    ! log_file    /var/log/hdslb.log
    ! log_async_mode    on
}

! netif config
netif_defs {
    <init> pktpool_size     1048575
    <init> pktpool_cache    256
    # LAN Interface 配置
    <init> device dpdk0 {
        rx {
            queue_number        3
            descriptor_number   1024
            ! rss                 all
        }
        tx {
            queue_number        3
            descriptor_number   1024
        }
        fdir {
            mode                perfect
            pballoc             64k
            status              matched
        }
        ! promisc_mode
        kni_name                dpdk0.kni
    }
    # WAN Interface 配置
    <init> device dpdk1 {
        rx {
            queue_number        3
            descriptor_number   1024
            ! rss                 all
        }
        tx {
            queue_number        3
            descriptor_number   1024
        }
        fdir {
            mode                perfect
            pballoc             64k
            status              matched
        }
        ! promisc_mode
        kni_name                dpdk1.kni
    }

    ! <init> bonding bond0 {
    !    mode        0
    !    slave       dpdk0
    !    slave       dpdk1
    !    primary     dpdk0
    !    kni_name    bond0.kni
    !}
}

! worker config (lcores)
worker_defs {
    # control plane CPU
    <init> worker cpu0 {
        type    master
        cpu_id  0
    }
    # data plane CPU
    # dpdk0、1 这 2 个 Port 的同一个收发队列共用同一个 CPU
    <init> worker cpu1 {
        type    slave
        cpu_id  1
        port    dpdk0 {
            rx_queue_ids     0
            tx_queue_ids     0
            ! isol_rx_cpu_ids  9
            ! isol_rxq_ring_sz 1048576
        }
        port    dpdk1 {
            rx_queue_ids     0
            tx_queue_ids     0
            ! isol_rx_cpu_ids  9
            ! isol_rxq_ring_sz 1048576
        }
    }
    <init> worker cpu2 {
        type    slave
        cpu_id  2
        port    dpdk0 {
            rx_queue_ids     1
            tx_queue_ids     1
            ! isol_rx_cpu_ids  10
            ! isol_rxq_ring_sz 1048576
        }
        port    dpdk1 {
            rx_queue_ids     1
            tx_queue_ids     1
            ! isol_rx_cpu_ids  10
            ! isol_rxq_ring_sz 1048576
        }
    }
    <init> worker cpu3 {
        type    slave
        cpu_id  3
        port    dpdk0 {
            rx_queue_ids     2
            tx_queue_ids     2
            ! isol_rx_cpu_ids  11
            ! isol_rxq_ring_sz 1048576
        }
        port    dpdk1 {
            rx_queue_ids     2
            tx_queue_ids     2
            ! isol_rx_cpu_ids  11
            ! isol_rxq_ring_sz 1048576
        }
    }

}

! timer config
timer_defs {
    # cpu job loops to schedule dpdk timer management
    schedule_interval    500
}

! hdslb neighbor config
neigh_defs {
    <init> unres_queue_length  128
    <init> timeout             60
}

! hdslb ipv4 config
ipv4_defs {
    forwarding                 off
    <init> default_ttl         64
    fragment {
        <init> bucket_number   4096
        <init> bucket_entries  16
        <init> max_entries     4096
        <init> ttl             1
    }
}

! hdslb ipv6 config
ipv6_defs {
    disable                     off
    forwarding                  off
    route6 {
        <init> method           hlist
        recycle_time            10
    }
}

! control plane config
ctrl_defs {
    lcore_msg {
        <init> ring_size                4096
        sync_msg_timeout_us             30000000
        priority_level                  low
    }
    ipc_msg {
        <init> unix_domain /var/run/hdslb_ctrl
    }
}

! ipvs config
ipvs_defs {
    conn {
        <init> conn_pool_size       2097152
        <init> conn_pool_cache      256
        conn_init_timeout           30
        ! expire_quiescent_template
        ! fast_xmit_close
        ! <init> redirect           off
    }

    udp {
        ! defence_udp_drop
        uoa_mode        opp
        uoa_max_trail   3
        timeout {
            normal      300
            last        3
        }
    }

    tcp {
        ! defence_tcp_drop
        timeout {
            none        2
            established 90
            syn_sent    3
            syn_recv    30
            fin_wait    7
            time_wait   7
            close       3
            close_wait  7
            last_ack    7
            listen      120
            synack      30
            last        2
        }
        synproxy {
            synack_options {
                mss             1452
                ttl             63
                sack
                ! wscale
                ! timestamp
            }
            ! defer_rs_syn
            rs_syn_max_retry    3
            ack_storm_thresh    10
            max_ack_saved       3
            conn_reuse_state {
                close
                time_wait
                ! fin_wait
                ! close_wait
                ! last_ack
           }
        }
    }
}

! sa_pool config
sa_pool {
    pool_hash_size   16
}

启动 HDSLB-DPVS

$ cd hdslb/
$ ./bin/hdslb
current thread affinity is set to F
EAL: Detected 4 lcore(s)
EAL: Detected 1 NUMA nodes
EAL: Multi-process socket /var/run/dpdk/rte/mp_socket
EAL: Selected IOVA mode 'PA'
EAL: Probing VFIO support...
EAL: VFIO support initialized
EAL:   Invalid NUMA socket, default to 0
EAL: Probe PCI driver: net_virtio (1af4:1000) device: 0000:01:00.0 (socket 0)
EAL:   Invalid NUMA socket, default to 0
EAL: Probe PCI driver: net_virtio (1af4:1000) device: 0000:03:00.0 (socket 0)
EAL:   using IOMMU type 8 (No-IOMMU)
EAL: Ignore mapping IO port bar(0)
EAL:   Invalid NUMA socket, default to 0
EAL: Probe PCI driver: net_virtio (1af4:1000) device: 0000:04:00.0 (socket 0)
EAL: Ignore mapping IO port bar(0)
EAL: No legacy callbacks, legacy socket not created
DPVS: HDSLB version: , build on 2024.05.24.14:37:02
CFG_FILE: Opening configuration file '/etc/hdslb.conf'.
CFG_FILE: log_level = WARNING
NETIF: dpdk0:rx_queue_number = 3
NETIF: dpdk1:rx_queue_number = 3
NETIF: worker cpu1:dpdk0 rx_queue_id += 0
NETIF: worker cpu1:dpdk0 tx_queue_id += 0
NETIF: worker cpu1:dpdk1 rx_queue_id += 0
NETIF: worker cpu1:dpdk1 tx_queue_id += 0
NETIF: worker cpu2:dpdk0 rx_queue_id += 1
NETIF: worker cpu2:dpdk0 tx_queue_id += 1
NETIF: worker cpu2:dpdk1 rx_queue_id += 1
NETIF: worker cpu2:dpdk1 tx_queue_id += 1
NETIF: worker cpu3:dpdk0 rx_queue_id += 2
NETIF: worker cpu3:dpdk0 tx_queue_id += 2
NETIF: worker cpu3:dpdk1 rx_queue_id += 2
NETIF: worker cpu3:dpdk1 tx_queue_id += 2
Kni: kni_add_dev: fail to set mac FA:27:00:00:0A:02 for dpdk0.kni: Timer expired
Kni: kni_add_dev: fail to set mac FA:27:00:00:0B:F6 for dpdk1.kni: Timer expired

在这里插入图片描述

HDSLB-DPVS 进程起来后,可以看见 2 个 DPDK Port 和对应的 2 个 KNI Interface。其中 DPDK Port 用于 LB 数据面转发,而 KNI 则用于 Keepalived HA 部署模式。

$ cd hdslb/bin/
$ ./dpip link show
1: dpdk0: socket 0 mtu 1500 rx-queue 3 tx-queue 3
    UP 10000 Mbps half-duplex auto-nego
    addr FA:27:00:00:0A:02 OF_TX_IP_CSUM
2: dpdk1: socket 0 mtu 1500 rx-queue 3 tx-queue 3
    UP 10000 Mbps half-duplex auto-nego
    addr FA:27:00:00:0B:F6 OF_TX_IP_CSUM


$ ip a
1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 qdisc noqueue state UNKNOWN group default qlen 1000
    link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00
    inet 127.0.0.1/8 scope host lo
       valid_lft forever preferred_lft forever
    inet6 ::1/128 scope host
       valid_lft forever preferred_lft forever
2: eth0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc mq state UP group default qlen 1000
    link/ether fa:27:00:00:00:c0 brd ff:ff:ff:ff:ff:ff
    inet 192.168.0.4/25 brd 192.168.0.127 scope global eth0
       valid_lft forever preferred_lft forever
    inet6 fe80::f827:ff:fe00:c0/64 scope link
       valid_lft forever preferred_lft forever
71: dpdk0.kni: <BROADCAST,MULTICAST> mtu 1500 qdisc noop state DOWN group default qlen 1000
    link/ether fa:27:00:00:0a:02 brd ff:ff:ff:ff:ff:ff
72: dpdk1.kni: <BROADCAST,MULTICAST> mtu 1500 qdisc noop state DOWN group default qlen 1000
    link/ether fa:27:00:00:0b:f6 brd ff:ff:ff:ff:ff:ff

测试 HDSLB-DPVS Two-arm Full-NAT 模式

请添加图片描述

  • HDSLB-DPVS
$ cd hdslb/bin

# add VIP to WAN interface
$ ./dpip addr add 10.0.0.100/32 dev dpdk1

# route for WAN/LAN access
$ ./dpip route add 10.0.0.0/16 dev dpdk1
$ ./dpip route add 192.168.100.0/24 dev dpdk0

# add routes for other network or default route if needed.
$ ./dpip route show
inet 10.0.0.100/32 via 0.0.0.0 src 0.0.0.0 dev dpdk1 mtu 1500 tos 0 scope host metric 0 proto auto
inet 192.168.100.0/24 via 0.0.0.0 src 0.0.0.0 dev dpdk0 mtu 1500 tos 0 scope link metric 0 proto auto
inet 10.0.0.0/16 via 0.0.0.0 src 0.0.0.0 dev dpdk1 mtu 1500 tos 0 scope link metric 0 proto auto

# add service <VIP:vport> to forwarding, scheduling mode is RR.
$ ./ipvsadm -A -t 10.0.0.100:80 -s rr

# add two RS for service, forwarding mode is FNAT (-b)
$ ./ipvsadm -a -t 10.0.0.100:80 -r 192.168.100.2 -b
$ ./ipvsadm -a -t 10.0.0.100:80 -r 192.168.100.3 -b

# add at least one Local-IP (LIP) for FNAT on LAN interface
$ ./ipvsadm --add-laddr -z 192.168.100.200 -t 10.0.0.100:80 -F dpdk0

# Check
$  ./ipvsadm -Ln
IP Virtual Server version 0.0.0 (size=0)
Prot LocalAddress:Port Scheduler Flags
  -> RemoteAddress:Port           Forward Weight ActiveConn InActConn
TCP  10.0.0.100:80 rr
  -> 192.168.100.2:80             FullNat 1      0          0
  -> 192.168.100.3:80             FullNat 1      0          0
  • Server
$ python -m SimpleHTTPServer 80
  • Client
$ curl 10.0.0.100

问题分析

问题 1:hdslb/tools/keepalived/configure 没有执行权限。

make[1]: Leaving directory '/root/hdslb/src'
make[1]: Entering directory '/root/hdslb/tools'
if [ ! -f keepalived/Makefile ]; then \
        cd keepalived && \
        ./configure && \
        cd -; \
fi
/bin/sh: 3: ./configure: Permission denied
make[1]: *** [Makefile:29: keepalived_conf] Error 126
make[1]: Leaving directory '/root/hdslb/tools'
make: *** [Makefile:33: all] Error 1

# 解决
$ chmod +x /root/hdslb/tools/keepalived/configure

问题 2:缺少配置文件

Cause: ports in DPDK RTE (2) != ports in dpvs.conf(0)

# 解决
$ cp conf/hdslb.conf.sample /etc/hdslb.conf

问题 3:开发机 2MB hugepage size 太小

Cause: Cannot init mbuf pool on socket 0

# 解决:把 hugepagesize 配置为 1G
# ref:https://stackoverflow.com/questions/51630926/cannot-create-mbuf-pool-with-dpdk

问题 4:缺少 rte_kni 模块

Cause: add KNI port fail, exiting...

# 解决
$ insmod ${RTE_SDK}/build/kmod/rte_kni.ko

问题 5:开发机大页内存不够

Kni: kni_add_dev: fail to set mac FA:27:00:00:07:AA for dpdk0.kni: Timer expired
Kni: kni_add_dev: fail to set mac FA:27:00:00:00:E1 for dpdk1.kni: Timer expired
IPSET: ipset_init: lcore 3: nothing to do.
IPVS: dp_vs_conn_init: lcore 3: nothing to do.
IPVS: fail to init synproxy: no memory
Segmentation fault (core dumped)

# 解决:扩容到 15G。

问题 6:开发机网卡不支持 HDSLB-DPVS 需要的 hardware offloads 功能。

Kni: kni_add_dev: fail to set mac FA:27:00:00:0A:02 for dpdk0.kni: Timer expired
Kni: kni_add_dev: fail to set mac FA:27:00:00:0B:F6 for dpdk1.kni: Timer expired
Ethdev port_id=0 requested Rx offloads 0x62f doesn't match Rx offloads capabilities 0xa1d in rte_eth_dev_configure()
NETIF: netif_port_start: fail to config dpdk0
EAL: Error - exiting with code: 1
  Cause: Start dpdk0 failed, skipping ...

# 解决:修改 netif 模块,不启动不支持的 offloads 功能。
static struct rte_eth_conf default_port_conf = {
    .rxmode = {
......
        .offloads = 0,
        //.offloads = DEV_RX_OFFLOAD_CHECKSUM | DEV_RX_OFFLOAD_VLAN,
    },
......
    .txmode = {
......
        .offloads = 0,
        //.offloads = DEV_TX_OFFLOAD_IPV4_CKSUM | DEV_TX_OFFLOAD_UDP_CKSUM | DEV_TX_OFFLOAD_TCP_CKSUM | DEV_TX_OFFLOAD_MBUF_FAST_FREE,
    },

NOTE:根据 DPDK 的文档,offloads mask 的每个 bit 都代表了特定的卸载功能。以下 0-15bit 对应的 Features:

  1. DEV_RX_OFFLOAD_VLAN_STRIP
  2. DEV_RX_OFFLOAD_IPV4_CKSUM
  3. DEV_RX_OFFLOAD_UDP_CKSUM
  4. DEV_RX_OFFLOAD_TCP_CKSUM
  5. DEV_RX_OFFLOAD_TCP_LRO
  6. DEV_RX_OFFLOAD_QINQ_STRIP
  7. DEV_RX_OFFLOAD_OUTER_IPV4_CKSUM
  8. DEV_RX_OFFLOAD_MACSEC_STRIP
  9. DEV_RX_OFFLOAD_VLAN_FILTER
  10. DEV_RX_OFFLOAD_VLAN_EXTEND
  11. DEV_RX_OFFLOAD_SCATTER
  12. DEV_RX_OFFLOAD_TIMESTAMP
  13. DEV_RX_OFFLOAD_SECURITY
  14. DEV_RX_OFFLOAD_KEEP_CRC
  15. DEV_RX_OFFLOAD_SCTP_CKSUM
  16. DEV_RX_OFFLOAD_OUTER_UDP_CKSUM

问题 7:开发机网络不支持 RSS 多队列。valid value: 0x0 表示当前网卡不支持任何 RSS 哈希函数。


Kni: kni_add_dev: fail to set mac FA:27:00:00:0A:02 for dpdk0.kni: Timer expired
Kni: kni_add_dev: fail to set mac FA:27:00:00:0B:F6 for dpdk1.kni: Timer expired
Ethdev port_id=0 invalid rss_hf: 0x3afbc, valid value: 0x0
NETIF: netif_port_start: fail to config dpdk0
EAL: Error - exiting with code: 1
  Cause: Start dpdk0 failed, skipping ...

# 解决方式 1:使用支持 multi-queues 和 RSS hash 的网卡。
# 解决方式 2:修改 netif 模块,不启动 multi-queues 和 RSS hash 功能。
static struct rte_eth_conf default_port_conf = {
    .rxmode = {
        //.mq_mode        = ETH_MQ_RX_RSS,
        .mq_mode        = ETH_MQ_RX_NONE,
......
    },
    .rx_adv_conf = {
        .rss_conf = {
            .rss_key = NULL,
            //.rss_hf  = /*ETH_RSS_IP*/ ETH_RSS_TCP,
            .rss_hf  = 0
        },
    },
......
port->dev_conf.rx_adv_conf.rss_conf.rss_hf = 0;    

问题 8:不支持多播地址配置

Kni: kni_add_dev: fail to set mac FA:27:00:00:0A:02 for dpdk0.kni: Timer expired
Kni: kni_add_dev: fail to set mac FA:27:00:00:0B:F6 for dpdk1.kni: Timer expired
NETIF: multicast address add failed for device dpdk0
EAL: Error - exiting with code: 1
  Cause: Start dpdk0 failed, skipping ...

# 解决:关闭多播功能
    //ret = idev_add_mcast_init(port);
    //if (ret != EDPVS_OK) {
    //    RTE_LOG(WARNING, NETIF, "multicast address add failed for device %s\n", port->name);
    //    return ret;
    //}

问题 9:LB connect pool 内存太小,程序崩溃退出。

$ ./ipvsadm -A -t 10.0.0.100:80 -s rr
[sockopt_msg_recv] socket msg header recv error -- 0/88 recieved  

IPVS: lb_conn_hash_table_init: lcore 0: create conn_hash_tbl failed. Requested size: 1073741824 bytes. LB_CONN_CACHE_LINES_DEF: 1, LB_CONN_TBL_SIZE: 16777216

# 解决方式 1:继续加大页内存到实际需要的大小。
# 解决方式 2:
#	1):释放一个 lcore 的大页内存
#	2):调小 DPVS_CONN_POOL_SIZE_DEF 从 2097152 减少到 1048576
//#define DPVS_CONN_POOL_SIZE_DEF     2097152
#define DPVS_CONN_POOL_SIZE_DEF     1048576

问题 10:编译器版本低缺少编译指令。

error: inlining failed in call to always_inline   "'_mm256_cmpeq_epi64_mask':"  : target specific option mismatch

# 解决:
# 1)升级 GCC 版本到 9.4.0
# 2)确定 CPU 支持指令集。ref:https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#expand=3828,301,2553&text=_mm256_cmpeq_epi64_mask&ig_expand=872

在这里插入图片描述

最后

值得注意的是上述问题记录是笔者在低配开发机中调试程序时所遇见的问题,实际上在一个资源充足的物理测试机上通常不会出现由于资源不足导致的大部分问题。

最后,本篇主要介绍了 Intel HDSLB 的基本运行原理和部署配置的方式,希望能够帮助读者们顺利的把 HDSLB-DPVS 项目 “玩” 起来。后面,我们将再次开发机环境的基础之上,通过《Intel HDSLB 高性能四层负载均衡器 — 高级特性和代码剖析》,继续深入挖掘 HDSLB-DPVS 的高级特性、软件架构分析和代码解读。敬请继续期待。:)

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1699430.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

[LLM]从GPT-4o原理到下一代人机交互技术

一 定义 GPT-4o作为OpenAI推出的一款多模态大型语言模型&#xff0c;代表了这一交互技术的重要发展方向。 GPT-4o是OpenAI推出的最新旗舰级人工智能模型&#xff0c;它是GPT系列的一个重要升级&#xff0c;其中的"o"代表"Omni"&#xff0c;中文意思是“全…

民宿bug

前端 后端 1 订单管理 订单日期已过&#xff0c;状态没有变成已完成

xgboost项目实战-保险赔偿额预测与信用卡评分预测001

目录 算法代码 原理 算法流程 xgb.train中的参数介绍 params min_child_weight gamma 技巧 算法代码 代码获取方式&#xff1a;链接&#xff1a;https://pan.baidu.com/s/1QV7nMC5ds5wSh-M9kuiwew?pwdx48l 提取码&#xff1a;x48l 特征直方图统计&#xff1a; fig, …

Advanced Installer 问题集锦

1、界面在主题中显示的图标&#xff0c;如logo、发布者名称、产品名称就算在设计界面时删除&#xff0c;但是下次打开工程依然存在 解决办法&#xff1a;“可见”属性设置为禁用 2、在不关闭软件的情况下&#xff0c;使用"文件->打开"来切换项目&#xff0c;再次…

我让gpt4o给我推荐了一千多次书 得到了这些数据

事情是这样的&#xff0c;我们公司不是有个读书小组嘛&#xff0c;但是今年大家都忙于工作&#xff0c;忽视了读书这件事&#xff0c;所以我就想着搞个群机器人&#xff0c;让它明天定时向群里推荐一本书&#xff0c;用来唤起大家对读书的兴趣。但在调试的过程中就发现gpt4o老喜…

uniapp使用uni.chooseImage选择图片后对其是否符合所需的图片大小和类型进行校验

uni.chooseImage的返回值在H5平台和其他平台的返回值有所差异&#xff0c;具体差异看下图 根据图片可以看出要想判断上传的文件类型是不能直接使用type进行判断的&#xff0c;所以我使用截取字符串的形式来判断&#xff0c;当前上传图片的后缀名是否符合所需要求。 要求&#…

(已开源-ICRA2023) High Resolution Point Clouds from mmWave Radar

本文提出了一种用于生成高分辨率毫米波雷达点云的方法&#xff1a;RadarHD&#xff0c;端到端的神经网络&#xff0c;用于从低分辨率雷达构建类似激光雷达的点云。本文通过在大量原始雷达数据上训练 RadarHD 模型&#xff0c;同时这些雷达数据有对应配对的激光雷达点云数据。本…

Vue3实战笔记(37)—粒子特效登录页面

文章目录 前言一、粒子特效登录页总结 前言 上头了&#xff0c;再来一个粒子特效登录页面。 一、粒子特效登录页 登录页&#xff1a; <template><div><vue-particles id"tsparticles" particles-loaded"particlesLoaded" :options"…

ML307R OpenCPU GPIO使用

一、GPIO使用流程图 二、函数介绍 三、GPIO 点亮LED 四、代码下载地址 一、GPIO使用流程图 这个图是官网找到的&#xff0c;ML307R GPIO引脚电平默认为1.8V&#xff0c;需注意和外部电路的电平匹配&#xff0c;具体可参考《ML307R_硬件设计手册_OpenCPU版本适用.pdf》中的描…

MLM之CogVLM2:CogVLM2(基于Llama-3-8B-Instruct 模型进行微调)的简介、安装和使用方法、案例应用之详细攻略

MLM之CogVLM2&#xff1a;CogVLM2(基于Llama-3-8B-Instruct 模型进行微调)的简介、安装和使用方法、案例应用之详细攻略 目录 CogVLM2的简介 1、更新日志 2、CogVLM2 系列开源模型的详细信息 3、Benchmark 4、项目结构 5、模型协议 CogVLM2的安装和使用方法 1、模型微调…

智慧社区管理系统:打造便捷、安全、和谐的新型社区生态

项目背景 在信息化、智能化浪潮席卷全球的今天&#xff0c;人们对于生活品质的需求日益提升&#xff0c;期待居住环境能与科技深度融合&#xff0c;实现高效、舒适、安全的生活体验。在此背景下&#xff0c;智慧社区管理系统应运而生&#xff0c;旨在借助现代信息技术手段&…

685. 冗余连接 II

685. 冗余连接 II 问题描述 在本问题中&#xff0c;有根树指满足以下条件的 有向 图。该树只有一个根节点&#xff0c;所有其他节点都是该根节点的后继。该树除了根节点之外的每一个节点都有且只有一个父节点&#xff0c;而根节点没有父节点。 输入一个有向图&#xff0c;该…

String类为什么设计成不可变的?

目录 缓存 安全性 线程安全 hashCode缓存 性能 其实这个问题我们可以通过缓存、安全性、线程安全和性能几个维度去解析。 缓存 字符串是Java最常用的数据结构&#xff0c;我们都知道字符串大量创建是非常耗费资源的&#xff0c;所以Java中就将String设计为带有缓存的功能…

揭秘Python安装目录:你的编程宝库隐藏了哪些宝藏?

python3.10安装目录结构 Python310/ │ ├── DLLs/ # Python 解释器所需的 DLL 文件 ├── Doc/ # Python 的 官方文档和参考手册 ├── include/ # 头文件和静态库文件 ├── Lib/ # Python 标准库 ├── libs/ …

微信小程序实现计算当前位置到目的地的距离

实现方式&#xff1a;使用腾讯位置服务 微信小程序JavaScript SDK | 腾讯位置服务 1.进腾讯位置服务申请key 2.下载sdk 微信小程序JavaScript SDK | 腾讯位置服务 3.微信公众平台添加授权域名 4.代码实现计算 const qqmap require("../../utils/qqmap-wx-jssdk.min.js…

探索集合python(Set)的神秘面纱:它与字典有何不同?

新书上架~&#x1f447;全国包邮奥~ python实用小工具开发教程http://pythontoolsteach.com/3 欢迎关注我&#x1f446;&#xff0c;收藏下次不迷路┗|&#xff40;O′|┛ 嗷~~ 目录 一、集合&#xff08;Set&#xff09;与字典&#xff08;Dictionary&#xff09;的初识 1. …

历年高校招生计划数据 API 数据接口

历年高校招生计划数据 API 数据接口 基础数据 / 高校招生&#xff0c;各高校历年招生计划数据&#xff0c;高校招生数据 / 历年计划。 1. 产品功能 支持历年高校招生计划数据查询&#xff1b;包含各高校招生计划详细数据&#xff1b;多维度查询条件支持&#xff1b;毫秒级查询…

3款录屏录制软件,打造专业级视频内容

随着技术的不断发展&#xff0c;人们在日常工作和学习中经常会遇到记录电脑屏幕的需求&#xff0c;例如录制游戏过程、制作教程、保存会议记录等。为了解决这一需求&#xff0c;许多录屏录制软件应运而生。本文将介绍三款常见的录屏录制软件&#xff0c;通过分析它们的特点和使…

JAVASE之类和对象(2)

哪怕犯错&#xff0c;也不能什么都不做。 主页&#xff1a;趋早–Step 专栏&#xff1a;JAVASE gitte:https://gitee.com/good-thg 接上部分&#xff0c;我们继续来学习JAVAEE类和对象。 引言&#xff1a; 这篇文章接上一篇&#xff0c;后半部分&#xff0c;结束类和对象 目录 …

C++:STL简介和容器string用法篇

一、STL简介 STL是C中的标准模板库&#xff08;Standard Template Library&#xff09;的缩写。它是C标准库的一部分&#xff0c;提供了一系列的数据结构和算法模板&#xff0c;包括各种容器、算法、迭代器、仿函数等&#xff0c;用于简化和加速C程序的开发过程。STL的设计理念…