智能家居完结 -- 整体设计

news2024/11/16 9:27:07

系统框图

前情提要:

智能家居1 -- 实现语音模块-CSDN博客

智能家居2 -- 实现网络控制模块-CSDN博客

智能家居3 - 实现烟雾报警模块-CSDN博客

智能家居4 -- 添加接收消息的初步处理-CSDN博客

智能家居5 - 实现处理线程-CSDN博客

智能家居6 -- 配置 ini文件优化设备添加-CSDN博客

实现主要程序: 

main.c 

#include <stdio.h>
#include <pthread.h>
#include <stdlib.h>
#include <wiringPi.h>

#include "control.h"
#include "mq_queue.h"
#include "voice_interface.h"
#include "socket_interface.h"
#include "smoke_interface.h"
#include "receive_interface.h"
#include "global.h"

// msg_queue_create



int main() {
    pthread_t thread_id;
    struct control *control_phead = NULL;
    struct control *pointer = NULL;
    ctrl_info_t *ctrl_info = NULL;
    ctrl_info = (ctrl_info_t *)malloc(sizeof(ctrl_info_t));
    ctrl_info->ctrl_phead = NULL;
    ctrl_info->mqd = -1;

    int node_num = 0; // 统计节点数
    if(-1 == wiringPiSetup())// 初始化 wiringPi 库
    {
        perror("wiringPi Init");
        return -1;
    }

    // 创建消息队列
    ctrl_info->mqd = msg_queue_create();
    if(-1 == ctrl_info->mqd)// 创建消息队列失败
    {
        printf("%s|%s|%d, mqd= %d\n",__FILE__,__func__,__LINE__,ctrl_info->mqd);
        return -1;
    }
    
    //  头插法插入 , so 头一直在变化
    ctrl_info->ctrl_phead = add_voice_to_ctrl_list(ctrl_info->ctrl_phead);
    ctrl_info->ctrl_phead = add_tcpsocket_to_ctrl_list(ctrl_info->ctrl_phead);
    ctrl_info->ctrl_phead = add_smoke_to_ctrl_list(ctrl_info->ctrl_phead);
    ctrl_info->ctrl_phead = add_receive_to_ctrl_list(ctrl_info->ctrl_phead);
  
  

    pointer = ctrl_info->ctrl_phead;

    while(NULL!=pointer) // 对所有控制结构体初始化,并且统计节点数
    {
        if(NULL != pointer->init)
        {
             printf("%s|%s|%d   control_name = %s\n",__FILE__,__func__,__LINE__,pointer->control_name);
             pointer->init();
        }
        pointer = pointer->next;
        node_num++; // 统计节点数
    }

    // 根据节点的总数 --> 创建对应数目的线程
    pthread_t *tid = (pthread_t *)malloc(sizeof(int) *node_num);
    pointer = ctrl_info->ctrl_phead;

    for(int i=0;i<node_num;++i)//遍历所有节点
    {
       if(NULL != pointer->get){
          printf("%s|%s|%d   control_name = %s\n",__FILE__,__func__,__LINE__,pointer->control_name);
          pthread_create(&tid[i],NULL,(void *)pointer->get,(void *)ctrl_info); // 传入这个结构体参数,方便同时调用多组线程里面的API
       }
        pointer = pointer->next;
    }
    
     for(int i=0;i<node_num;++i)
     {
     pthread_join(tid[i],NULL);
     }

     for(int i=0;i<node_num;++i)
     {
      if(NULL != pointer->final)
          pointer->final(); // 接打开的使用接口关闭
      pointer = pointer->next;
     }
     
     msq_queue_final(ctrl_info->mqd);

     if(NULL != ctrl_info)
          free(ctrl_info); // 这个是malloc 堆区申请的内存 -->  需要手动的释放

     if(NULL != tid)
          free(tid);


     return 0;
}

语言控制模块 - voice_interface.c


#if 0
struct control
{
char control_name[128]; //监听模块名称
int (*init)(void); //初始化函数
void (*final)(void);//结束释放函数
void *(*get)(void *arg);//监听函数,如语音监听
void *(*set)(void *arg); //设置函数,如语音播报
struct control *next;
};
#endif

#include <pthread.h>
#include <stdio.h>
#include "voice_interface.h"
#include "mq_queue.h"
#include "uartTool.h"
#include "global.h"


static int serial_fd = -1; // static 这个 变量只在当前文件有效

static int voice_init(void )
{
  serial_fd = myserialOpen(SERIAL_DEV,BAUD); // 初始化并且打开串口
  printf("%s|%s|%d   serial_fd = %d\n",__FILE__,__func__,__LINE__,serial_fd);

  return serial_fd;
}

static void voice_final(void)
{
  if(-1 != serial_fd) // 打开串口成功
  {
    close(serial_fd); // 关闭我们打开的串口
    serial_fd = -1; // 复位
  }
}
// 接收语言指令
static void* voice_get(void *arg)// mqd 通过arg 传参获得
{
    int len = 0;
    mqd_t mqd = -1;
    ctrl_info_t * ctrl_info = NULL; 
    if(NULL != arg)
        ctrl_info = (ctrl_info_t*)arg;

    unsigned char buffer[6] = {0x00, 0x00, 0x00, 0x00, 0x00, 0x00}; // 初始化 buffer
    if (-1 == serial_fd)
    {
        //打开串口
        serial_fd = voice_init();// 尝试打开串口
        if (-1 == serial_fd){ //还是打开失败
        printf("%s | %s | %d:open serial failed\n", __FILE__, __func__, __LINE__); // 三个宏的含义: 文件名 - main.c,函数名 - pget_voice ,行号 -  138
        pthread_exit(0);   
        }                                                        // 串口打开失败 -->退出
    }
 
     
    mqd = ctrl_info->mqd; 
    

    if((mqd_t)-1 == mqd)
    {
       pthread_exit(0);  
    }

    pthread_detach(pthread_self());// 与父线程分离
    printf("%s thread start\n",__func__);

    while (1)
    {
        len = serialGetstring(serial_fd, buffer); // 通过串口获得语言输入
        printf("%s|%s|%d,  0x%x,0x%x,0x%x,0x%x,0x%x,0x%x\n",__FILE__,__func__,__LINE__,buffer[0],buffer[1],buffer[2],buffer[3],buffer[4],buffer[5]);
        printf("%s|%s|%d:len = %d\n",__FILE__,__func__,__LINE__,len);
        if (len > 0)         // 判断是否 接到识别指令
        {
          if(buffer[0] == 0xAA && buffer[1] == 0x55 
            &&buffer[4]==0x55 && buffer[5]==0xAA)
            {
               printf("%s|%s|%d, send: 0x%x,0x%x,0x%x,0x%x,0x%x,0x%x\n",__FILE__,__func__,__LINE__,buffer[0],buffer[1],buffer[2],buffer[3],buffer[4],buffer[5]);
        
              send_msg(mqd,buffer,len); // 注意获取len长度不能使用strlen() --> 0x00 会识别为截止位-->只能读取到三个字节(但不是我们实际的截止位(0x55 0xAA ))
            }
            memset(buffer,0,sizeof(buffer)); // 复位buffer
        }
    }

    pthread_exit(0);

}
// 语音播报


static void* voice_set(void *arg)
{
  pthread_detach(pthread_self());// 与父线程分离
  unsigned char *buffer = (unsigned char*)arg;
  
  if (-1 == serial_fd)
    {
        //打开串口
        serial_fd = voice_init();// 尝试打开串口
        if (-1 == serial_fd){ //还是打开失败
        printf("%s | %s | %d:open serial failed\n", __FILE__, __func__, __LINE__); // 三个宏的含义: 文件名 - main.c,函数名 - pget_voice ,行号 -  138
        pthread_exit(0);   
        }                                                        // 串口打开失败 -->退出
    }

    if(NULL != buffer){ // 接收到数据
      serialSendstring(serial_fd,buffer,6); // 向串口发送接收到的数据
     // 语言模块识别到串口发送的数据后就,进行相应的语言输出 
    }

 pthread_exit(0);
}

struct  control voice_control ={
    .control_name = "voice",
    .init = voice_init,
    .final = voice_final,
    .get = voice_get,
    .set = voice_set,
    .next = NULL
};


struct control *add_voice_to_ctrl_list(struct control *phead)
{
  //头插法实现 添加链表节点
   return add_interface_to_ctrl_list(phead,&voice_control);

};

网络控制模块 - socket_interface.c
 

#include <pthread.h>

#include "socket_interface.h"
#include "control.h"
#include "socket.h"
#include "mq_queue.h"
#include "global.h"
#include <netinet/tcp.h> // 设置 tcp 心跳 的参数

static int s_fd = -1;

static int  tcpsocket_init(void)
{
    s_fd = socket_init(IPADDR,IPPORT);
    //return s_fd;
    return -1;
}

static void tcpsocket_final(void) 
{
  close(s_fd);
  s_fd = -1;
}

static void* tcpsocket_get(void *arg)
{
  
    int c_fd = -1;
    unsigned char buffer[BUF_SIZE];
    int ret = -1;
    struct sockaddr_in c_addr;
    mqd_t mqd = -1;
    ctrl_info_t * ctrl_info = NULL; 
    int keepalive = 1;    // 开启TCP_KEEPALIVE选项
    int keepidle = 10;    // 设置探测时间间隔为10秒
    int keepinterval = 5; // 设置探测包发送间隔为5秒
    int keepcount = 3;    // 设置探测包发送次数为3次

   

    pthread_detach(pthread_self()); // 和主线程(他的父线程)分离

    printf("%s|%s|%d   s_fd = %d\n", __FILE__, __func__, __LINE__, s_fd);
   
    if(-1 == s_fd) // 判断是否初始化成功
    {
     s_fd = tcpsocket_init();
     if(-1 == s_fd)
     {
      printf("tcpsocket_init error\n");
      pthread_exit(0);
     }

    }

     if(NULL != arg)
        ctrl_info = (ctrl_info_t*)arg;
     if(NULL != ctrl_info)
         mqd = ctrl_info->mqd;      
    
    
    if((mqd_t)-1 == mqd)
    {
       pthread_exit(0);  
    }

    memset(&c_addr, 0, sizeof(struct sockaddr_in));

    int clen = sizeof(struct sockaddr_in);

    printf("%s thread start\n", __func__);
    while (1) // 一直等待接收
    {
        c_fd = accept(s_fd, (struct sockaddr *)&c_addr, &clen); // 获得新的客户端 描述符

       if (c_fd == -1)
        {
            continue;
        }

        ret = setsockopt(c_fd, SOL_SOCKET, SO_KEEPALIVE, (void *)&keepalive,sizeof(keepalive));
        if(-1 == ret){
          perror("setsockopt");
          break;
        }
       
        ret = setsockopt(c_fd, IPPROTO_TCP, TCP_KEEPIDLE, (void *)&keepidle, sizeof(keepidle));
          if(-1 == ret){
          perror("setsockopt");
          break;
        }
             ret = setsockopt(c_fd, IPPROTO_TCP, TCP_KEEPINTVL, &keepinterval,
                         sizeof(keepinterval));
          if(-1 == ret){
          perror("setsockopt");
          break;
        }
         ret = setsockopt(c_fd, IPPROTO_TCP, TCP_KEEPCNT, &keepcount,
                         sizeof(keepcount)); 
             if(-1 == ret){
          perror("setsockopt");
          break;
        }

        // 打印调试信息
        printf("%s | %s | %d: Access a connection from %s:%d\n", __FILE__, __func__, __LINE__, inet_ntoa(c_addr.sin_addr), ntohs(c_addr.sin_port));

    

        while (1)
        {
            memset(buffer, 0, BUF_SIZE);
            ret = recv(c_fd, buffer, BUF_SIZE, 0); // 等待接收
            // 将接收到数据打印出来
               printf("%s|%s|%d,  0x%x,0x%x,0x%x,0x%x,0x%x,0x%x\n",__FILE__,__func__,__LINE__,buffer[0],buffer[1],buffer[2],buffer[3],buffer[4],buffer[5]);
       
            if (ret > 0)
            {
            if(buffer[0] == 0xAA && buffer[1] == 0x55 
                 &&buffer[4]==0x55 && buffer[5]==0xAA)
            {
                  printf("%s|%s|%d,  send: 0x%x,0x%x,0x%x,0x%x,0x%x,0x%x\n",__FILE__,__func__,__LINE__,buffer[0],buffer[1],buffer[2],buffer[3],buffer[4],buffer[5]);
       
              send_msg(mqd,buffer,ret); 
            }
                
            }
            else if (0 == ret || -1 == ret) // 没读到,or 读到空
            {
                break;
            }
        }

      
    }

    pthread_exit(0);

}


struct  control tcpsocket_control ={
    .control_name = "tcpsocket",
    .init = tcpsocket_init,
    .final = tcpsocket_final,
    .get = tcpsocket_get,
    .set = NULL, //不需要实现 设置
    .next = NULL
};


struct control *add_tcpsocket_to_ctrl_list(struct control *phead)
{
  //头插法实现 添加链表节点

   return add_interface_to_ctrl_list(phead,&tcpsocket_control);

};












烟雾报警模块 - smoke_interfac.c


#include <pthread.h>
#include <wiringPi.h>
#include <stdio.h>

#include "smoke_interface.h"
#include "control.h"
#include "mq_queue.h"
#include "global.h"
#include <netinet/tcp.h> // 设置 tcp 心跳 的参数

#define SMOKE_PIN   6 // 烟雾报警模块接的引脚
#define SMOKE_MODE INPUT

static int s_fd = -1;

static int  smoke_init(void)
{
    printf("%s|%s|%d\n",__FILE__,__func__,__LINE__);
    pinMode(SMOKE_PIN, SMOKE_MODE); // 引脚 和 模式配置
    return 0;
}

static void smoke_final(void) 
{
  // do nothing
}

static void* smoke_get(void *arg)
{
  // AA 55 45 00  55 AA -->  45 00 -->触发警报
  int status = HIGH; //低电平有效 -- 默认设置为高电平
  int switch_status = 0;  // 报警开关 -- 默认设置为不开 -- 0
  ssize_t byte_send = -1;
  unsigned char buffer[6] = {0xAA,0x55,0x00,0x00,0x55,0xAA};
  mqd_t mqd = -1;
  ctrl_info_t * ctrl_info = NULL; 

   if(NULL != arg)
        ctrl_info = (ctrl_info_t*)arg;
   if(NULL != ctrl_info)
         mqd = ctrl_info->mqd;      
    
    
    if((mqd_t)-1 == mqd)
    {
       pthread_exit(0);  
    }

  pthread_detach(pthread_self());  // 父子线程分离
  printf("%s thread start.\n",__func__);
  
  while(1)
  {
    status = digitalRead(SMOKE_PIN); // 读取当前引脚状态
    if(LOW == status) //  探测到烟雾 -- 发生报警
    {
     switch_status = 1; // 打开报警器开关
     buffer[2] = 0x45;
     buffer[3] = 0x00;// 低电平触发警报 --
     //蜂鸣器是低电平触发 --> 我们这里把buffer 修改得与beep匹配,方便与他产生联系
     printf("%s|%s|%d,  0x%x,0x%x,0x%x,0x%x,0x%x,0x%x\n",__FILE__,__func__,__LINE__,buffer[0],buffer[1],buffer[2],buffer[3],buffer[4],buffer[5]);
       
     byte_send = mq_send(mqd, buffer, 6,0); // 向消息队列里面发送数据 -- 接收到后语言模块会识别播报 - 火灾警报
      if (-1 == byte_send)
      {
        continue;
      }
    }
    else if(HIGH == status && 1 == switch_status) // 未探测到烟雾,并且报警器开关还没关闭 -- 关闭报警器开关
    {
      switch_status = 0; //  关闭报警器开关
      buffer[2] = 0x45;
      buffer[3] = 0x01;//警报结束
      printf("%s|%s|%d,  0x%x,0x%x,0x%x,0x%x,0x%x,0x%x\n",__FILE__,__func__,__LINE__,buffer[0],buffer[1],buffer[2],buffer[3],buffer[4],buffer[5]);
       
      byte_send = mq_send(mqd, buffer, 6,0);
      if (-1 == byte_send)
      {
        continue;
      }
    }
    sleep(5);

  }


      
  pthread_exit(0); // 退出线程
}


struct  control smoke_control ={
    .control_name = "smoke",
    .init = smoke_init,
    .final = smoke_final,
    .get = smoke_get,
    .set = NULL, //不需要实现 设置
    .next = NULL
};


struct control *add_smoke_to_ctrl_list(struct control *phead)
{
 return add_interface_to_ctrl_list(phead,&smoke_control);

}

接收处理线程 - receive_interface.c

#include <pthread.h>
#include <mqueue.h>
#include <string.h>
#include <errno.h>
#include <stdlib.h>
#include <stdio.h>
#include <wiringPi.h>

#include "receive_interface.h"
#include "control.h"
#include "mq_queue.h"
#include "global.h"
#include "face.h"
#include "myoled.h"
//#include "lrled_gdevice.h"
#include "gdevice.h"
// #include "fan_gdevice.h"
// #include "bled_gdevice.h"
// #include "beep_gdevice.h"
// #include "lock_gdevice.h"

#include "ini.h"
#include "face.h"



#define MATCH(s, n) strcmp(section, s) == 0 && strcmp(name, n) == 0

/*
接收模块:
对接收到消息做出相应处理
包括 oled 人脸识别 语言播报 GPIO  引脚状态配置

*/

static int oled_fd = -1;
static struct gdevice *pdevhead = NULL;

typedef struct
{
  int msg_len;
  unsigned char *buffer;
  ctrl_info_t *ctrl_info;
} recv_msg_t;


static int handler_gdevice(void *user, const char *section, const char *name, const char *value)
{
    struct gdevice *pdev = NULL;
    if (NULL == pdevhead)
    {
        pdevhead = (struct gdevice *)malloc(sizeof(struct gdevice));
        memset(pdevhead, 0, sizeof(struct gdevice));
        pdevhead->next = NULL;
        strcpy(pdevhead->dev_name, section);
    }
    // printf("section = %s, name = %s, value = %s\n", section, name, value);

    else if (0 != strcmp(section, pdevhead->dev_name)) // 当section对不上的时候,表示到了下一个设备
    {
        // 把新节点(设备)使用头插法插入
        pdev = (struct gdevice *)malloc(sizeof(struct gdevice));
        memset(pdev, 0, sizeof(struct gdevice));
        strcpy(pdev->dev_name, section);
        pdev->next = pdevhead;
        pdevhead = pdev;
    }

    if (NULL != pdevhead)
    {
        if (MATCH(pdevhead->dev_name, "key"))
        {
            sscanf(value, "%x", &pdevhead->key); // 把value(string)的值 转为int类型 16进行格式 传递给  pdevhead->key)
            printf("%d  pdevhead->key = 0x%x\n", __LINE__, pdevhead->key);
        }

        else if (MATCH(pdevhead->dev_name, "gpio_pin"))
        {
            pdevhead->gpio_pin = atoi(value);
        }

        else if (MATCH(pdevhead->dev_name, "gpio_mode"))
        {

            if (strcmp(value, "OUTPUT") == 0)
            {
                pdevhead->gpio_mode = OUTPUT;
            }
            else if (strcmp(value, "INPUT") == 0)
            {
                pdevhead->gpio_mode = INPUT;
            }
            else
            {
                printf("gpio_mode error\n");
            }
        }

        else if (MATCH(pdevhead->dev_name, "gpio_status"))
        {

            if (strcmp(value, "LOW") == 0)
            {
                pdevhead->gpio_mode = LOW;
            }
            else if (strcmp(value, "HIGH") == 0)
            {
                pdevhead->gpio_mode = HIGH;
            }
            else
            {
                printf("gpio_status error\n");
            }
        }

        else if (MATCH(pdevhead->dev_name, "check_face_status"))
        {
            pdevhead->check_face_status = atoi(value);
        }

        else if (MATCH(pdevhead->dev_name, "voice_set_status"))
        {
            pdevhead->voice_set_status = atoi(value);
        }
    }

    return 1;
}



static int receive_init(void)
{
  // pdevhead = add_lrled_to_gdevice_list(pdevhead); // 头插法加入 客厅灯
  // pdevhead = add_bled_to_gdevice_list(pdevhead);  // 加入卧室灯
  // pdevhead = add_fan_to_gdevice_list(pdevhead);   // 加入风扇
  // pdevhead = add_beep_to_gdevice_list(pdevhead);  // 蜂鸣器
  // pdevhead = add_lock_to_gdevice_list(pdevhead);  // 开锁
     if (ini_parse("/etc/gdevice.ini", handler_gdevice, NULL) < 0) {
        printf("Can't load 'gdevice.ini'\n");
        return 1;
    }

    struct gdevice *pdev = NULL;
    pdev = pdevhead;
    while (pdev != NULL)
    {
        // printf("inside %d",__LINE__);

        printf("dev_name:%s\n", pdev->dev_name);
        printf("key:%x\n", pdev->key);
        printf("gpio_pin:%d\n", pdev->gpio_pin);
        printf("gpio_mode:%d\n", pdev->gpio_mode);
        printf("gpio_status:%d\n", pdev->gpio_status);
        printf("check_face_status:%d\n", pdev->check_face_status);
        printf("voice_set_status:%d\n", pdev->voice_set_status);

        pdev = pdev->next;
    }

  // 设备类链表添加
  oled_fd = myoled_init(); // 初始化oled
  face_init();             // 初始化人脸识别

  return oled_fd;
}

static void receive_final(void)
{
  face_final();
  if (-1 != oled_fd)
  {
    close(oled_fd); // 关闭oled 打开的文件
    oled_fd = -1;   // 复位
  }
}







//  处理设备 --  比如打开灯 和风扇等





static void *handler_device(void *arg)
{
  pthread_detach(pthread_self()); // 和主线程(他的父线程)分离

  recv_msg_t *recv_msg = NULL;
  struct gdevice *cur_gdev = NULL;
  char success_or_failed[20] = "success";
  pthread_t tid = -1;
  int smoke_status = 0;
  double face_result = 0.0; //存放人脸匹配度

  int ret = -1;

  if (NULL != arg) // 有参数
  {
    recv_msg = (recv_msg_t *)arg; // 获取参数
    printf("recv_len = %d\n", recv_msg->msg_len);
    printf("%s|%s|%d, handler: 0x%x,0x%x,0x%x,0x%x,0x%x,0x%x\n", __FILE__, __func__, __LINE__,
           recv_msg->buffer[0], recv_msg->buffer[1], recv_msg->buffer[2], recv_msg->buffer[3], recv_msg->buffer[4], recv_msg->buffer[5]);
  }

  // need to do something
  if (NULL != recv_msg && NULL != recv_msg->buffer) // if 消息队列非空,并且buffer 里面接收到数据
  {
    
    // recv_msg->buffer[2] -->  第三位 用于存放设备类型
    cur_gdev = find_device_by_key(pdevhead, recv_msg->buffer[2]);
    printf("%s|%s|%d,find success   buffer[2] = 0x%x \n", __FILE__, __func__, __LINE__, recv_msg->buffer[2]);
  }
   
  if (NULL != cur_gdev) // if 能找到的这设备 --> 设备存在
  {
     printf("%s|%s|%d, cur_gdev \n", __FILE__, __func__, __LINE__);
    // BUFFER 的第四个参数  用于 存放开关状态 0 表示开, 1 表示关
    cur_gdev->gpio_status = recv_msg->buffer[3] == 0 ? LOW : HIGH; // 获取状态存入cur_gdev中
    //人脸识别
    if(1 == cur_gdev->check_face_status){
      face_result = face_status(); //得到人脸识别的匹配度
      if(face_result > 0.6){ //匹配成功
      ret = set_gpio_device_status(cur_gdev); // 设置电平 --> 开锁
      recv_msg->buffer[2] = 0x47;  //识别成功的语音播报
      }
      else{
      recv_msg->buffer[2] = 0x46;
      }
    }

    else if( 0 == cur_gdev->check_face_status){
    // printf("%s|%s|%d,Set  before set_gpio_device_status\n",__FILE__,__func__,__LINE__);
    ret = set_gpio_device_status(cur_gdev); // 将获取到的状态真正赋值给引脚
    // printf("%s|%s|%d, after set_gpio_device_status \n",__FILE__,__func__,__LINE__);
    }

 printf("%s|%s|%d, = %d\n", __FILE__, __func__, __LINE__,cur_gdev->voice_set_status);
   
   // 需要语言播报
  if (1 == cur_gdev->voice_set_status) 
  {
    printf("%s|%s|%d,2\n", __FILE__, __func__, __LINE__);
    if (NULL != recv_msg && NULL != recv_msg->ctrl_info && NULL != recv_msg->ctrl_info->ctrl_phead)
    {
     printf("%s|%s|%d,2\n", __FILE__, __func__, __LINE__);
      struct control *pcontrol = recv_msg->ctrl_info->ctrl_phead;
      while (NULL != pcontrol)
      {
        if (strstr(pcontrol->control_name, "voice")) //匹配到语言播报
        {

          if (0x45 == recv_msg->buffer[2] && 0 == recv_msg->buffer[3]) // 语音播报 打开
          {
            smoke_status = 1;
            
          }
          pthread_create(&tid, NULL, pcontrol->set, (void *)recv_msg->buffer); // 新开线程区进行语言播报
          break;
          
        }
        pcontrol = pcontrol->next;
      }
    }
  }

printf("%s|%s|%d,2\n", __FILE__, __func__, __LINE__);
  if (-1 == ret) // 设置失败
  {
    printf("%s|%s|%d,2\n", __FILE__, __func__, __LINE__);
    memset(success_or_failed, '\0', sizeof(success_or_failed));
    strncpy(success_or_failed, "failed", 6);
  }

  printf("%s|%s|%d,2\n", __FILE__, __func__, __LINE__);
  // 配置OLED
  char oled_msg[512];
  memset(oled_msg, 0, sizeof(oled_msg));
  char *change_status = cur_gdev->gpio_status == LOW ? "Open" : "Close";
  sprintf(oled_msg, "%s %s %s!\n", change_status, cur_gdev->dev_name, success_or_failed);
  if(smoke_status == 1)
  {
    memset(oled_msg, 0, sizeof(oled_msg));
   sprintf(oled_msg, "A risk of fire!\n");
  

  }  
  
  myoled_show(oled_msg);
 
  //让门打开5s自动关闭
  if(1 == cur_gdev->check_face_status && 0 == ret && face_result >0.6){
     sleep(5); //开门5s后关门
     cur_gdev->gpio_status = HIGH; //设置高电平(低电平有效)
     ret = set_gpio_device_status(cur_gdev); //关门
  }




  }

  pthread_exit(0);
}


static void *receive_get(void *arg) // 接收消息队列里面的 数据
{
  printf("enter receive_get\n");
  //  通过参数 初始化我们 定义的recv_msg_t 结构体
  recv_msg_t *recv_msg = NULL;
  unsigned char *buffer = NULL;
  struct mq_attr attr;
  pthread_t tid = -1;
  ssize_t read_len = -1;

  

  if (NULL != arg)
  {
    recv_msg = (recv_msg_t *)malloc(sizeof(recv_msg_t));
    recv_msg->ctrl_info = (ctrl_info_t *)arg; // 这里实际上就获取到了mqd 和 phead(我们需要操作的struct control 链表 的头节点)
    recv_msg->msg_len = 0;
    recv_msg->buffer = NULL;
  }
  else
    pthread_exit(0);

  if (mq_getattr(recv_msg->ctrl_info->mqd, &attr) == -1)
  { // 获取消息队列失败 -- 异常
    pthread_exit(0);
  }

  // 能获取到消息队列
  recv_msg->buffer = (unsigned char *)malloc(attr.mq_msgsize); // 分配内存
  buffer = (unsigned char *)malloc(attr.mq_msgsize);
  // mq_msgsize -- 每条消息的大小
  memset(recv_msg->buffer, 0, attr.mq_msgsize); // 初始化
  memset(buffer, 0, attr.mq_msgsize);           // 初始化

  pthread_detach(pthread_self()); // 和主线程(他的父线程)分离

  while (1)
  {
    read_len = mq_receive(recv_msg->ctrl_info->mqd, buffer, attr.mq_msgsize, NULL);

    printf("%s|%s|%d, recv: 0x%x,0x%x,0x%x,0x%x,0x%x,0x%x\n", __FILE__, __func__, __LINE__, buffer[0], buffer[1], buffer[2], buffer[3], buffer[4], buffer[5]);
    printf("%s|%s|%d: read_len = %ld\n", __FILE__, __func__, __LINE__, read_len);
    if (-1 == read_len)
    { // 接收失败
      if (errno == EAGAIN)
      {
        printf("queue is empty\n");
      }
      else
      {
        break;
      }
    }
    // 以下是接收到正常数据的情况
    else if (buffer[0] == 0xAA && buffer[1] == 0x55 && buffer[4] == 0x55 && buffer[5] == 0xAA)
    {
      recv_msg->msg_len = read_len;
      memcpy(recv_msg->buffer, buffer, read_len);
      //  创建线程去 处理我们的接收到的信号
      pthread_create(&tid, NULL, handler_device, (void *)recv_msg);
    }
  }
  if (NULL != recv_msg)
    free(recv_msg);

  if (NULL != buffer)
    free(buffer);

  pthread_exit(0);
}

struct control receive_control = {
    .control_name = "receive",
    .init = receive_init,
    .final = receive_final,
    .get = receive_get,
    .set = NULL, // 不需要实现 设置
    .next = NULL};

struct control *add_receive_to_ctrl_list(struct control *phead)
{
  // 头插法实现 添加链表节点

  return add_interface_to_ctrl_list(phead, &receive_control);
};

编译运行

环境配置:

// 我们人脸识别开门模块调用了阿里云的sdk,请确保arm设上已经安装了对应SDK,和阿里云服务配置,请去这里安装指示配置(按照指示下载SDK,添加阿里云AccessKey)

人脸识别_身份验证识别_客流分析系统_人脸门禁闸机-阿里云 (aliyun.com)

编译

由于文件众多,我们采用Makefile,来编译

Makefile

CC := aarch64-linux-gnu-gcc

SRC := $(shell find src -name "*.c")

INC :=  ./inc \
		./3rd/usr/local/include \
		./3rd/usr/include \
		./3rd/usr/include/python3.10 \
		./3rd/usr/include/aarch64-linux-gnu/python3.10 \
		./3rd/usr/include/aarch64-linux-gnu

OBJ := $(subst src/,obj/,$(SRC:.c=.o))

TARGET=obj/smarthome

CFLAGS := $(foreach item, $(INC),-I$(item)) # -I./inc -I./3rd/usr/local/include

LIBS_PATH := ./3rd/usr/local/lib \
		 ./3rd/lib/aarch64-linux-gnu \
		 ./3rd/usr/lib/aarch64-linux-gnu \
		 ./3rd/usr/lib/python3.10 \
#L
LDFLAGS := $(foreach item, $(LIBS_PATH),-L$(item)) # -L./3rd/usr/local/libs

LIBS := -lwiringPi -lpython3.10 -pthread -lexpat -lz -lcrypt

obj/%.o:src/%.c
	mkdir -p obj
	$(CC) -o $@ -c $< $(CFLAGS)

$(TARGET) :$(OBJ)
	$(CC) -o $@ $^ $(CFLAGS) $(LDFLAGS) $(LIBS)
	scp obj/smarthome ini/gdevice.ini orangepi@192.168.1.18:/home/orangepi


compile : $(TARGET)

clean:
	rm $(TARGET) obj $(OBJ) -rf
debug:
	echo $(CC)
	echo $(SRC)
	echo $(INC)
	echo $(OBJ)
	echo $(TARGET)
	echo $(CFLAGS)
	echo $(LDFLAGS)
	echo $(LIBS)



.PHONY: clean compile debug

可以看到我的Makefile 里面添加了scp传送,请根据自己的派的ip进行修改

运行:

 sudo -E ./smarthome

sudo -- 因为我们调用了wiringpi库来调节电平,需要访问到系统文件

-E 保持环境,即我们可以使用root用户里面配置的AccessKey,来访问阿里云的接口

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1698925.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

复习java5.26

面向对象和面向过程 面向过程&#xff1a;把一个任务分成一个个的步骤&#xff0c;当要执行这个任务的时候&#xff0c;只需要依次调用就行了 面向对象&#xff1a;把构成任务的事件构成一个个的对象&#xff0c;分别设计这些对象&#xff08;属性和方法&#xff09;、然后把…

国内最受欢迎的7大API供应平台对比和介绍||电商API数据采集接口简要说明

本文将介绍7款API供应平台&#xff1a;聚合数据、百度APIStore、Apix、数说聚合、通联数据、HaoService、datasift 。排名不分先后&#xff01; 免费实用的API接口 第一部分 1、聚合数据&#xff08;API数据接口_开发者数据定制&#xff09; 2、百度API Store(API集市_APIStore…

数据安全不容小觑:.hmallox勒索病毒的防范与应对

一、引言 随着网络技术的飞速发展&#xff0c;网络安全问题日益凸显&#xff0c;其中勒索病毒作为一种极具破坏性的网络攻击手段&#xff0c;已在全球范围内造成了巨大的经济损失和社会影响。在众多勒索病毒中&#xff0c;.hmallox勒索病毒以其狡猾的传播方式和强大的加密能力…

27【Aseprite 作图】盆栽——拆解

1 橘子画法拆解 (1)浅色3 1 0;深色0 2 3 就可以构成一个橘子 (2)浅色 2 1;深色1 0 (小个橘子) (3)浅色 2 1 0;深色1 2 3 2 树根部分 (1)底部画一条横线 (2)上一行 左空2 右空1 【代表底部重心先在右】 (3)再上一行,左空1,右空1 (4)再上一行,左突出1,…

L01_JVM 高频知识图谱

这些知识点你都掌握了吗&#xff1f;大家可以对着问题看下自己掌握程度如何&#xff1f;对于没掌握的知识点&#xff0c;大家自行网上搜索&#xff0c;都会有对应答案&#xff0c;本文不做知识点详细说明&#xff0c;只做简要文字或图示引导。 类的生命周期 类加载器 JVM 的内存…

汽车IVI中控开发入门及进阶(二十):显示技术之LCDC

TFT LCD=Thin Film Transistor Liquid Crystal Display LCDC=LCD Controller 薄膜晶体管液晶显示器(TFT LCD)控制器在驱动现代显示技术的功能和性能方面起着关键作用。它们充当屏幕后面的大脑,仔细处理数字信号,并将其转化为精确的命令,决定每个像素的行为,决定它们的…

数据库系统概论(第5版)复习笔记

笔记的Github仓库地址 &#x1f446;这是笔记的gihub仓库&#xff0c;内容是PDF格式。 因为图片和代码块太多&#xff0c;放到CSDN太麻烦了&#xff08;比较懒&#x1f923;&#xff09; 如果感觉对各位有帮助的话欢迎点一个⭐\^o^/

Unity 生成物体的几种方式

系列文章目录 unity工具 文章目录 系列文章目录前言&#x1f449;一、直接new的方式创建生成1-1.代码如下1-2. 效果图 &#x1f449;二、使用Instantiate创建生成&#xff08;GameObject&#xff09;2-1.代码如下2-2.效果如下图 &#x1f449;三.系统CreatePrimitive创建生成3…

C++编程揭秘:虚表机制与ABI兼容性的实例剖析

前言&#xff1a; 假设你的应用程序引用的一个库某天更新了&#xff0c;虽然 API 和调用方式基本没变&#xff0c;但你需要重新编译你的应用程序才能使用这个库&#xff0c;那么一般说这个库是源码兼容&#xff08;Source compatible&#xff09;&#xff1b;反之&#xff0c;如…

BGP策略实验(路径属性和选路规则)

要求&#xff1a; 1、使用preval策略&#xff0c;确保R4通过R2到达192.168.10.0/24 2、使用AS Path策略&#xff0c;确保R4通过R3到达192.168.11.0/24 3、配置MED策略&#xff0c;确保R4通过R3到达192.168.12.0/24 4、使用Local Preference策略&#xff0c;确保R1通过R2到达19…

不同网段的通信过程

这里的AA和HH指的是mac地址&#xff0c;上面画的是路由器 底下的这个pc1&#xff0c;或者其他的连接在这里的pc&#xff0c;他们的默认网关就是路由器的这个192.168.1.1/24这个接口 来看看通信的过程 1、先判断&#xff08;和之前一样&#xff09; 2、去查默认网关&#xf…

【MySQL】库的基础操作

&#x1f30e;库的操作 文章目录&#xff1a; 库的操作 创建删除数据库 数据库编码集和校验集 数据库的增删查改       数据库查找       数据库修改 备份和恢复 查看数据库连接情况 总结 前言&#xff1a;   数据库操作是软件开发中不可或缺的一部分&#xff0…

Hibernate

主流ORM框架Object Relation Mapping对象关系映射&#xff0c;将面向对象映射成面向关系。 如何使用 1、导入相关依赖 2、创建Hibernate配置文件 3、创建实体类 4、创建实体类-关系映射文件 5、调用Hibernate API完成操作 具体操作 1、创建 Maven工程&#xff0c;在pom.xml中导…

应用程序图标提取

文章目录 [toc]提取过程提取案例——提取7-zip应用程序的图标 提取过程 找到需要提取图标的应用程序的.exe文件 复制.exe文件到桌面&#xff0c;并将复制的.exe文件后缀改为.zip 使用解压工具7-zip解压.zip文件 在解压后的文件夹中&#xff0c;在.rsrc/ICON路径下的.ico文件…

01.并发编程简介

1 什么是并发编程 所谓并发编程是指在一台处理器上“同时”处理多个任务。并发是在同一实体上的多个事件。多个事件在同一时间间隔发生。 2 为什么我们要学习并发编程&#xff1f; 最直白的原因就是因为面试需要&#xff0c;大厂的 Java 岗的并发编程能力属于标配。 而在非大厂…

vscode远程连接Ubuntu mysql服务器

注意&#xff1a;刚开始使用root用户死活连接不上&#xff0c;可能就是root用户没有权限的问题&#xff0c;可以尝试创建一个新的数据库用户&#xff0c;授予权限进行连接 ubuntu安装mysql 创建新用户 执行&#xff1a;sudo apt-get install mysql-server安装服务器(yum) 执…

【排序算法】选择排序以及需要注意的问题

选择排序的基本思想&#xff1a;每一次从待排序的数据元素中选出最小&#xff08;或最大&#xff09;的一个元素&#xff0c;存放在序列的起始位置&#xff0c;直到全部待排序的数据元素排完 。 第一种实现方法&#xff1a; void SelectSort(int* arr, int n) {for (int j 0…

Python Beautiful Soup 使用详解

大家好&#xff0c;在网络爬虫和数据抓取的领域中&#xff0c;Beautiful Soup 是一个备受推崇的 Python 库&#xff0c;它提供了强大而灵活的工具&#xff0c;帮助开发者轻松地解析 HTML 和 XML 文档&#xff0c;并从中提取所需的数据。本文将深入探讨 Beautiful Soup 的使用方…

C#调用HttpClient.SendAsync报错:System.Net.Http.HttpRequestException: 发送请求时出错。

C#调用HttpClient.SendAsync报错&#xff1a;System.Net.Http.HttpRequestException: 发送请求时出错。 var response await client.SendAsync(request, HttpCompletionOption.ResponseHeadersRead, cancellationToken);问题出在SSL/TLS&#xff0c;Windows Server 2012不支持…

深入浅出MySQL事务实现底层原理

重要概念 事务的ACID 原子性&#xff08;Atomicity&#xff09;&#xff1a;即不可分割性&#xff0c;事务中的操作要么全不做&#xff0c;要么全做一致性&#xff08;Consistency&#xff09;&#xff1a;一个事务在执行前后&#xff0c;数据库都必须处于正确的状态&#xf…