【动态规划】斐波那契数列模型(C++)

news2024/11/17 6:20:42

目录

1137.第N个泰波那契数

解法(动态规划) 算法流程

1. 状态表⽰:

2. 状态转移⽅程:

3. 初始化:

4. 填表顺序:

5. 返回值:

 C++算法代码 

优化: 滚动数组

测试:

08.01.三步问题

解法(动态规划) 算法思路

1. 状态表⽰

2. 状态转移⽅程

3. 初始化

4. 填表顺序

5. 返回值

代码:

测试

746.使⽤最⼩花费爬楼梯

2. 状态转移⽅程:

3. 初始化:

测试:

 91.解码⽅法

算法思路:

1. 状态表⽰:

2. 状态转移⽅程:

3. 初始化:

代码: 

优化

测试


1137.第N个泰波那契数

解法(动态规划) 算法流程

1. 状态表⽰:

这道题可以「根据题⽬的要求」直接定义出状态表⽰:

dp[i] 表⽰:第i 个泰波那契数的值。

2. 状态转移⽅程:

题⽬已经⾮常贴⼼的告诉我们了: 

dp[i] = dp[i - 1] + dp[i - 2] + dp[i - 3]

3. 初始化:

从我们的递推公式可以看出, dp[i] 在 i = 0 以及i = 1 的时候是没有办法进⾏推导的,因 为dp[-2] 或dp[-1] 不是⼀个有效的数据。

因此我们需要在填表之前,将0, 1, 2 位置的值初始化。题⽬中已经告诉我们dp[0] = 0, dp[1] = dp[2] = 1 。

4. 填表顺序:

毫⽆疑问是「从左往右」。

5. 返回值:

应该返回dp[n] 的值。

 C++算法代码 

使⽤⼀维数组:

class Solution {
public:
    int tribonacci(int n) {
        //如何填,抄状态转移方程
        if(n==0||n==1)
        return n;
        vector<int> dp(n+1);
        dp[0]=0,dp[1]=1,dp[2]=1;//初始化前三个
        //left->right
        for(int i=3;i<=n;i++)
        dp[i]=dp[i-1]+dp[i-2]+dp[i-3];
        //返回
        return dp[n];
        //核心:从左往右一个个+
    }
};

优化: 滚动数组

 //之后的背包中,会更加常用:

//滚动数组优化
int tribonacci(int n){
    if(n==0)return 0;
    if(n==1||n==2)return 1;
    int a=0,b=1,c=1,d=0;
    for(int i=3;i<=n;i++)
    {
        d=a+b+c;
        a=b;b=c;c=d;
    }
    return d;

}

测试:

08.01.三步问题

解法(动态规划) 算法思路

1. 状态表⽰

这道题可以根据「经验+题⽬要求」直接定义出状态表⽰: dp[i] 表⽰:到达 i 位置时,⼀共有多少种⽅法。

2. 状态转移⽅程

以i位置状态的最近的⼀步,来分情况讨论:

如果 dp[i] 表⽰⼩孩上第i 阶楼梯的所有⽅式,那么它应该等于所有上⼀步的⽅式之和:

  • i. 上⼀步上⼀级台阶, dp[i] += dp[i - 1] ;
  • ii. 上⼀步上两级台阶, dp[i] += dp[i - 2] ;
  • iii. 上⼀步上三级台阶, dp[i] += dp[i - 3] ;

综上所述, dp[i] = dp[i - 1] + dp[i - 2] + dp[i - 3] 。

需要注意的是,这道题⽬说,由于结果可能很⼤,需要对结果取模。

在计算的时候,三个值全部加起来再取模,即(dp[i - 1] + dp[i - 2] + dp[i - 3]) % MOD 是不可取的,同学们可以试验⼀下, n 取题⽬范围内最⼤值时,⽹站会报错signed integer overflow 。

对于这类需要取模的问题,我们每计算⼀次(两个数相加/乘等),都需要取⼀次模。否则,万⼀ 发⽣了溢出,我们的答案就错了

3. 初始化

从我们的递推公式可以看出, dp[i] 在i = 0, i = 1 以及i = 2 的时候是没有办法进⾏ 推导的,因为dp[-3] dp[-2] 或dp[-1] 不是⼀个有效的数据。

 因此我们需要在填表之前,将1, 2, 3 位置的值初始化。

根据题意, dp[1] = 1, dp[2] = 2, dp[3] = 4 。

4. 填表顺序

毫⽆疑问是「从左往右」。

5. 返回值

应该返回dp[n] 的值。

代码:

#define MOD 1000000007
class Solution {
    //有一点起始累加,到最后一个的感觉
public:
    int waysToStep(int n) {
        //1.状态表示  i和dp[i]表示什么
        //2.方程      dp[i]和最近一步的关系
        //3.初始化    不可越界
        //4.填表顺序   是从左到右还是从右到左
        //5.返回       dp[i/i-1]
        int i=0;
        vector<int> dp(n+1);//n+1 因为数组有0
        dp[1]=1;dp[2]=2;dp[3]=4;
        if(n==1||n==2) return n;
        if(n==3) return 4;
        for(i=4;i<=n;i++)
        dp[i]=((dp[i-1]+dp[i-2])%MOD+dp[i-3])%MOD;
        return dp[n];
    }
};

测试

746.使⽤最⼩花费爬楼梯

 

注意注意:

在这道题中,数组内的每⼀个下标[0, n - 1] 表⽰的都是楼层,⽽顶楼的位置其实是在n 的 位置!!!  

之后我们就着重研究:方程和初始化啦~

2. 状态转移⽅程:

根据最近的⼀步,分情况讨论:

▪ 先到达i - 1 的位置,然后⽀付cost[i - 1] ,接下来⾛⼀步⾛到 i 位置:

dp[i - 1] + csot[i - 1]

▪ 先到达i - 2 的位置,然后⽀付 cost[i - 2] ,接下来⾛⼀步⾛到i 位置:

dp[i - 2] + csot[i - 2]

 dp[i]= min (cost[i-1]+dp[i-1],cost[i-2]+dp[i-2]);

3. 初始化:

从我们的递推公式可以看出,我们需要先初始化i = 0 ,以及i = 1 位置的值。容易得到 dp[0] = dp[1] = 0 ,因为不需要任何花费,就可以直接站在第0 层和第1 层上。

class Solution {
public:
    int minCostClimbingStairs(vector<int>& cost) {
        int n=cost.size();
        //初始化一个dp表
        vector<int> dp(n+1,0);
        //初始化
        dp[0]=dp[1]=0;
        //填表
        for(int i=2;i<n+1;i++)
        //根据状态转移方程得
        dp[i]=min(cost[i-1]+dp[i-1],cost[i-2]+dp[i-2]);
        //一步两步当中,勇敢取小
        return dp[n];

    }
};

测试:

 91.解码⽅法

算法思路:

类似于斐波那契数列~

1. 状态表⽰:

根据以往的经验,对于⼤多数线性dp ,我们经验上都是「以某个位置结束或者开始」做⽂章,这 ⾥我们继续尝试「⽤i位置为结尾」结合「题⽬要求」来定义状态表⽰。

 dp[i] 表⽰:字符串中 [0,i] 区间上,⼀共有多少种编码⽅法。//一般都是所求及dp

2. 状态转移⽅程:

定义好状态表⽰,我们就可以分析 i 位置的 dp 值,如何由「前⾯」或者「后⾯」的信息推导出 来。

关于i 位置的编码状况,我们可以分为下⾯两种情况:

  • i. 让i 位置上的数单独解码成⼀个字⺟;
  • ii. 让i 位置上的数与i - 1 位置上的数结合,解码成⼀个字⺟。

 下⾯我们就上⾯的两种解码情况,继续分析:

◦ 让i位置上的数单独解码成⼀个字⺟,就存在「解码成功」和「解码失败」两种情况:

  • i. 解码成功当 i 位置上的数在 [1, 9] 之间的时候,说明i 位置上的数是可以单独解 码的,那么此时[0, i] 区间上的解码⽅法应该等于 [0, i - 1] 区间上的解码⽅ 法。因为 [0, i - 1] 区间上的所有解码结果,后⾯填上⼀个 i 位置解码后的字⺟就 可以了。此时 dp[i] = dp[i - 1] ;
  • ii. 解码失败:当 i 位置上的数是 0 的时候,说明 i 位置上的数是不能单独解码的,那么 此时 [0, i] 区间上不存在解码⽅法。因为 i 位置如果单独参与解码,但是解码失败 了,那么前⾯做的努⼒就全部⽩费了。此时 dp[i] = 0 。

◦ 让 i 位置上的数与 i - 1 位置上的数结合在⼀起,解码成⼀个字⺟,也存在「解码成功」 和「解码失败」两种情况:

  • i. 解码成功:当结合的数在[10, 26] 之间的时候,说明[i - 1, i] 两个位置是可以 解码成功的,那么此时[0, i] 区间上的解码⽅法应该等于[0, i - 2 ]区间上的解码 ⽅法,原因同上。此时dp[i] = dp[i - 2]
  •  ii. 解码失败:当结合的数在[0, 9] 和[27 , 99] 之间的时候,说明两个位置结合后解 码失败(这⾥⼀定要注意00 01 02 03 04 ......这⼏种情况),那么此时[0, i] 区 间上的解码⽅法就不存在了,原因依旧同上。此时dp[i] = 0

综上所述: dp[i] 最终的结果应该是上⾯四种情况下,解码成功的两种的累加和(因为我们关⼼ 的是解码⽅法,既然解码失败,就不⽤加⼊到最终结果中去),因此可以得到状态转移⽅程 ( dp[i] 默认初始化为 0 ):

  •  i. 当 s[i] 上的数在 [1, 9] 区间上时: dp[i] += dp[i - 1] ;
  •  ii. 当 s[i - 1] 与 s[i] 上的数结合后,在[10, 26] 之间的时候: dp[i] += dp[i - 2] ;

如果上述两个判断都不成⽴,说明没有解码⽅法, dp[i] 就是默认值 0 。

3. 初始化:

⽅法⼀(直接初始化):

由于可能要⽤到i - 1 以及i - 2 位置上的dp 值,因此要先初始化「前两个位置」。初始化dp[0] :

 i. 当s[0] == '0' 时,没有编码⽅法,结果dp[0] = 0 ;

 ii. 当s[0] != '0' 时,能编码成功, dp[0] = 1

 初始化dp[1] :

i. 当s[1] 在[1,9] 之间时,能单独编码,此时dp[1] += dp[0] (原因同上, dp[1] 默认为0 )

ii. 当s[0] 与s[1] 结合后的数在[10, 26] 之间时,说明在前两个字符中,⼜有⼀种 编码⽅式,此时dp[1] += 1

 ⽅法⼆(添加辅助位置初始化):

可以在最前⾯加上⼀个辅助结点,帮助我们初始化。使⽤这种技巧要注意两个点:

i. 辅助结点⾥⾯的值要保证后续填表是正确的;

ii. 下标的映射关系

代码: 

class Solution {
    // dp 是一种从起始到末的次数累加
public:
    int numDecodings(string s) {
        // size
        int n = s.size();
        vector<int> dp(n); // 创建一个dp表

        // 初始化前两个位置
        dp[0] = s[0] != '0';
        if (n == 1)
            return dp[0]; // 处理边界情况
        if (s[1] <= '9' && s[1] >= '1')
            dp[1] += dp[0];
        int t = (s[0] - '0') * 10 + s[1] - '0';
//如果和前一个数 联合编码
        if (t >= 10 && t <= 26)
            dp[1] += 1;
        for (int i = 2; i < n; i++) {
            // 如果单独编码
            if (s[i] <= '9' && s[i] >= '1')
                dp[i] += dp[i - 1];
            int t = (s[i - 1] - '0') * 10 + s[i] - '0';
            if (t >= 10 && t <= 26)
                dp[i] += dp[i - 2];
        }
        return dp[n - 1];
    }
};

优化

使用添加辅助结点的方式 初始化:

class Solution {
public:
    int numDecodings(string s) {
        // 优化
        int n = s.size();
        vector<int> dp(n + 1);
        dp[0] = 1; // 保证后续填表是正确的
        dp[1] = s[0] != '0';
        // 填表
        for (int i = 2; i <= n; i++) {
            // 处理单独编码
            if (s[i - 1] != '0')
                dp[i] += dp[i - 1];
            // 如果和前⾯的⼀个数联合起来编码
            int t = (s[i - 2] - '0') * 10 + s[i - 1] - '0';
            if (t >= 10 && t <= 26)
                dp[i] += dp[i - 2];
        }
        return dp[n];
    }
};

测试

 本文就到这里结束啦,大家也可以多多去力扣刷一些 动态规划的题  巩固一下~

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1697760.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

电脑提示请重新安装软件MSVCP140.dll的几种解决方法分享

在日常使用电脑的过程中&#xff0c;我们常常会遇到一些错误提示&#xff0c;其中之一就是找不到msvcp140.dll文件&#xff0c;导致软件无法正常启动运行。这个问题可能是由于缺少相应的依赖库或者版本不匹配引起的。下面我将介绍5种解决方法&#xff0c;帮助大家解决这个问题。…

0524_网络编程8

思维导图&#xff1a;

Java基础的语法---StringBuilder

StringBuilder 构造方法 StringBuilder()&#xff1a;创建一个空的StringBuilder实例。 StringBuilder(String str)&#xff1a;创建一个StringBuilder实例&#xff0c;并将其初始化为指定的字符串内容。 StringBuilder(int a): 创建一个StringBuilder实例…

数据结构--《二叉树》

二叉树 1、什么是二叉树 二叉树(Binar Tree)是n(n>0)个结点的优先集合&#xff0c;该集合或者为空集(称为空二叉树)&#xff0c;或者由一个根结点和两颗互不相交的、分别称为根结点的左子树和右子树的二叉树构成。 这里给张图&#xff0c;能更直观的感受二叉树&#xff1…

AJAX初级

AJAX的概念&#xff1a; 使用浏览器的 XMLHttpRequest 对象 与服务器通信 浏览器网页中&#xff0c;使用 AJAX技术&#xff08;XHR对象&#xff09;发起获取省份列表数据的请求&#xff0c;服务器代码响应准备好的省份列表数据给前端&#xff0c;前端拿到数据数组以后&#xf…

手把手教学,一站式教你实现服务器(Ubuntu)Anaconda多用户共享

背景&#xff1a;书接上回&#xff0c;一站式安装Ubuntu及配置服务器手把手教学&#xff0c;一站式安装ubuntu及配置服务器-CSDN博客 在安装及配置好服务器后&#xff0c;因为课题组可能涉及多个用户共用一台服务器&#xff0c;为了防止服务器上代码误删和Anaconda环境管理混乱…

js之图表使用

今天为了给大家演示图表的使用,今天展示下切换图形的修改属性快速修改 <!DOCTYPE html> <html><head><meta charset"utf-8"><title></title><script src"./js/jquery-3.7.1.js"></script><script src…

Android 使用 adb 列出设备上所有危险权限

步骤1&#xff1a;确定 Android SDK 位置 打开 Android Studio 的设置&#xff0c;并来到 Languages & Frameworks › Android SDK 处&#xff1a; 这里可以看到 Android SDK 目录的位置&#xff1a; 例如&#xff1a;/Users/admin/Library/Android/sdk。 复制这个路径&am…

RAG概述(一):RAG架构的演进

目录 概述 RAG核心步骤 Indexing索引 Retrieval检索 Generation生成​​​​​​​ Native RAG Advanced RAG Modular RAG 参考 概述 RAG&#xff1a;Retrieval-Augmented Generation 检索增强生成。 RAG通过结合LLMs的内在知识和外部数据库的非参数化数据&#xff…

区间合并-leetcode合并石头的最低成本-XMUOJ元素共鸣:深层次的唤醒

题目 思路 话不多说&#xff0c;直接上代码 附上INT_MAX和INT_MIN 【C】详解 INT_MAX 和 INT_MIN&#xff08;INT_MAX 和 INT_MIN是什么&#xff1f;它们的用途是什么&#xff1f;如何防止溢出&#xff1f;&#xff09;_c int max-CSDN博客 代码 /* leetcode合并石头的最低…

未授权访问:Hadoop 未授权访问漏洞

目录 1、漏洞原理 2、环境搭建 3、未授权访问 4、通过REST API命令执行 防御手段 今天继续学习各种未授权访问的知识和相关的实操实验&#xff0c;一共有好多篇&#xff0c;内容主要是参考先知社区的一位大佬的关于未授权访问的好文章&#xff0c;还有其他大佬总结好的文章…

【机器学习数据可视化-07】波士顿房价预测数据分析

波士顿房价预测&#xff1a;基于数据可视化的深入探索 一、引言   在当今社会&#xff0c;房地产市场作为经济的重要支柱之一&#xff0c;其走势与波动直接影响着国家经济的稳定和人民生活的品质。波士顿&#xff0c;这座历史悠久且充满活力的城市&#xff0c;其房地产市场一…

ElasticSearch学习篇12_《检索技术核心20讲》基础篇

背景 学习极客实践课程《检索技术核心20讲》https://time.geekbang.org/column/article/215243 课程分为基础篇、进阶篇、系统案例篇 主要记录企业课程学习过程课程大纲关键点&#xff0c;以文档形式记录笔记。 内容 检索技术&#xff1a;它是更底层的通用技术&#xff0c…

如何用bet快速创建文件夹多个同级文件夹,多层子文件夹

第一种用txt编辑&#xff0c;保存格式改为bat 运行即可 md用来创建文件夹 md空格文件夹名字 或者 md空格文件夹名字\子文件夹名字 第一个创建一个文件夹&#xff0c;或者多个同级文件夹用空格隔开或者用,英文逗号隔开 md 00 md 00 md 11 md 22 md 33 或者 md 00 1…

Python 中别再用 ‘+‘ 拼接字符串了!

当我开始学习 Python 时&#xff0c;使用加号来连接字符串非常直观和容易&#xff0c;就像许多其他编程语言&#xff08;比如Java&#xff09;一样。 然而&#xff0c;很快我意识到许多开发者似乎更喜欢使用.join()方法而不是。 在本文中&#xff0c;我将介绍这两种方法之间的…

Charles抓包App_https_夜神模拟器

Openssl安装 下载安装 下载地址&#xff1a; http://slproweb.com/products/Win32OpenSSL.html 我已经下载好了64位的&#xff0c;也放出来&#xff1a; 链接&#xff1a;https://pan.baidu.com/s/1Nkur475YK48_Ayq_vEm99w?pwdf4d7 提取码&#xff1a;f4d7 --来自百度网…

Golang实现文件复制

方法&#xff1a;三种 package zdpgo_fileimport ("errors""io""os" )// CopyFile 使用io.Copy进行文件的复制&#xff0c;同时也会复制文件的所有权限 // param src 复制文件 // param des 目标文件 // return error 错误信息 func CopyFile(s…

MacOS安装Docker-Compose

方法一 按照百度的方法进行安装&#xff0c;我大致复制一下百度的方法 1.确保您已经安装了Docker Desktop。 2.下载Docker Compose二进制文件。 3.将二进制文件移动到/usr/local/bin目录。 4.更改二进制文件的权限&#xff0c;使其可执行。 以下是具体的命令&#xff1a;…

LiveGBS流媒体平台GB/T28181用户手册-用户管理:添加用户、编辑、关联通道、搜索、重置密码

LiveGBS流媒体平台GB/T28181用户手册-用户管理:添加用户、编辑、关联通道、搜索、重置密码 1、用户管理1.1、添加用户1.2、编辑用户1.3、关联通道1.4、重置密码1.5、搜索1.6、删除 2、搭建GB28181视频直播平台 1、用户管理 1.1、添加用户 添加用户&#xff0c;可以配置登陆用户…

git 无法下载UE5源码问题

最近做镜像&#xff0c;突然遇到这个问题。 无法下载&#xff0c;应该如何解决呢&#xff1f; 1.首先 跳过htts ssl验证 2&#xff0c;设置更大的缓冲区 结果还是这个问题&#xff1a;